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Abstract

We investigate how distorted, yet structured beliefs, emerge in strategic situations. Specifi-

cally, we study two-player games in which each player is endowed with a biased-belief function

that represents the discrepancy between a player’s beliefs about the opponent’s strategy and the

actual strategy. Our equilibrium condition requires that: (1) each player chooses a best response

strategy to his distorted belief about the partner’s strategy, and (2) the distortion functions form

best responses to one another, in the sense that if one of the players is endowed with a different

distortion function, then that player is outperformed in the game induced by this new distortion

function. Our analysis characterizes equilibrium outcomes and identify the belief biases that

support these equilibrium outcomes in different strategic environments.

JEL classification: C73, D03, D83.

1 Introduction

Standard models of equilibrium behavior attribute players with perfect rationality at two different

levels: beliefs and actions. Players are assumed to form beliefs that are consistent with reality and

to choose actions that maximize their utility given the beliefs that they hold. Much of the literature

in behavioral and experimental economics that document violations of the rationality assumption

at the level of beliefs is ascribing these violations to cognitive limitations. However, in interactive

environments where one person’s beliefs affect other persons’ actions, beliefs’ distortions are not

arbitrary, and they may arise to serve some strategic purposes (see, e.g., the self-serving biases
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2 1 INTRODUCTION

analyzed in Babcock and Loewenstein, 1997, and the analysis of frustration and anger in Battigalli

et al., 2015).

In this paper we investigate how distorted, yet structured beliefs, emerge in strategic situations.

Our basic assumption here is that distorted beliefs often emerge because they offer a strategic ad-

vantage to those who are holding them even when these beliefs are wrong. More specifically, players

often hold distorted beliefs as a form of a commitment device that affects the behavior of their coun-

terparts. The precise cognitive process that is responsible for the formation of beliefs is complex, and

it is out of the scope of this paper to draw it. We believe, however, that, in addition, to analytic

assessment of evidence, preferences in the form of desires, fears and other emotions contribute to the

process, and, to an extent, facilitate beliefs’ biases. If the evidence is unambiguous and decisive, or if

the consequence of beliefs’ distortion is detrimental to the player’s welfare, preferences may play less

of a role and learning may work to calibrate beliefs to reality. But when beliefs are biased in ways

that favor their holders by affecting the behavior of their counterparts, learning can actually reinforce

biases rather than diminishing them.

Standard equilibrium notions in game theory draw a clear line between preferences and beliefs.

The former are exogenous and fixed, the latter can be amended through Bayesian updating but

are not allowed to be affected by preferences. However, phenomena such as wishful-thinking and

overconfidence, where beliefs are tilted towards what their holder desires reality to be, suggest that

in real life, beliefs and preferences can intermingle. Similarly, beliefs’ rigidity and belief polarization

(see, e.g., Lord et al., 1979; Ross and Anderson, 1982) refer to situations in which two people with

conflicting prior beliefs both strengthen their beliefs in response to observing the same data. The

parties’ aversion to depart from their original beliefs can also be regarded as a form of preferences

and beliefs intermingling.

It is easy to see how the belief biases described above can have strategic benefits in interactive

situations. Wishful thinking and optimism can facilitate cooperation in interactions that require

mutual trust. Overconfidence can deter competitors, and beliefs’ rigidity may allow an agent to

sustain a credible threat. An important objective of our analysis would be to identify the strategic

environments that support biases such as wishful thinking and overconfidence as part of equilibrium

behavior. It is worthwhile noting that not only individuals are susceptible to beliefs biases that

are strategically motivated. Governments are prone to be affected by such biases as well. Bush

administration’s unsubstantiated confidence regarding Saddam Hussein’s possession of “weapon of

mass destruction” prior to the second Gulf war and the vast discrepancy between Israeli and US

intelligence assessments regarding Iran’s Nuclear intentions prior to the signing of the Iran nuclear
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deal can be easily interpreted as strategically motivated beliefs’ distortion.

For biased beliefs to yield a strategic advantage to a player holding them, it is essential that

counterparts to the interaction regard them as credible and believe that the player will act upon

them.

A different body of empirical evidence consistent with strategic beliefs is offered by the Psychia-

tric literature on “Depressive Realism” (e.g., Dobson and Franche, 1989). This literature compares

probabilistic assessments conveyed by psychiatrically healthy people with those suffering from clinical

depression. Participants of both categories were requested to assess the likelihood of experiencing

negative or positive events in both public and private setups. Comparing subjects’ answers with the

objective probabilities of these events revealed that in a public setup clinically depressed individuals

were more realistic than their healthy counterparts for both types of events. The apparent belief bias

among healthy individuals can be reasonably attributed to the strategic component of beliefs. Mood

disorders negatively affect strategic reasoning (Inoue et al., 2004), which, to a certain extent, may

diminish strategic belief distortion among clinically depressed individuals relative to their healthy

counterparts.

The formation of biased beliefs and the process by which they are held credible by counterparts

are two sides of the same coin. For the sake of tractability, we shall avoid specifying a concrete

dynamic model that describes these processes. Instead, we shall adopt a static approach by imposing

equilibrium conditions on players’ beliefs and their interpretation by counterparts. This static appro-

ach is consistent with a large part of the literature on endogenous preferences (see, e.g., (Guth and

Yaari, 1992; Dekel et al., 2007; Friedman and Singh, 2009; Herold and Kuzmics, 2009; Winter et al.,

forthcoming; Heller and Winter, 2016; Heller and Sturrock, 2017)). Nevertheless, we mention a few

mechanisms that can facilitate these processes and turn biased beliefs into a credible commitment

device:

1. Refraining from accessing information or using biased sources of information, e.g. subscribing

to a newspaper with a specific political orientation or consulting with biased experts.

2. Following passionately a religion, a moral principle or an ideology that have belief implications

regarding human behavior.

3. Possessing personality traits that have implications on beliefs (e.g. narcissism or naivety).

The mechanisms described above are not only likely to induce beliefs’ biases, but are also prone

to generate signals sent to the player’s counterparts regarding these biases with a certain degree of
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verifiability. These mechanisms, the signals they induce and their interpretation are the main forces

that facilitate biased belief equilibria.

Our notion of biased belief equilibrium uses a two-stage paradigm. In the first stage each player

is endowed with a biased-belief function. This function represents the discrepancy between a player’s

beliefs about the strategy profile of others players and the actual profile. In the second stage each

player chooses a best response strategy to his distorted belief about the partner’s strategy (the

chosen strategy profile is referred to as the equilibrium outcome). Finally, our equilibrium condition

require that the distortion functions are not arbitrary, but form best responses to one another in

the following sense. If one of the players is endowed with a different distortion function, then there

exists an equilibrium of the induced biased game in which this player is outperformed. The stronger

refinement of strong biased belief equilibrium requires a player endowed with a different biased-belief

function to be outperformed in all equilibria of the induced biased game.

Our analysis of biased belief will go beyond characterizing equilibrium outcomes. An additional

important objective is to identify the belief biases that support these equilibrium outcomes in different

strategic environments. Central to our analysis will be belief distortion properties such as "wishful

thinking" and "pessimism" that sustain biased belief equilibria in different strategic environments.

1.1 Summary of Main Results

We begin our analysis by studying the relations between biased-belief equilibrium outcomes and Nash

equilibria. We show that any Nash equilibrium can be implemented as the outcome of a biased-belief

equilibrium, though in some cases this requires at least one of the players to have a distorted belief

about the opponent’s strategy. This, in particular, implies that every game admits a biased-belief

equilibrium. Next, we show that introducing biased beliefs do not change the set of equilibrium

outcomes in games in which at least one of the players have a dominant action. In contrast, biased-

belief equilibrium admits non-Nash behavior in most other games, including games in which both

players always obtain identical payoffs.

Next we characterize the set of biased-belief equilibrium outcomes. We present two necessary

conditions for a strategy profile to be a biased-belief equilibrium in any game: (1) no player uses

a strictly dominated strategy, and (2) the payoff of each player is above the minmax payoff of the

player while restricting the players to choose only undominated strategies (i.e., strategies that are

not strictly dominated). We examine these condition by focusing on two classes of games: (1) games

with two actions for each player, and (2) games in which the set of actions is an interval, and the

payoff function is “well-behaved”. We show that in those classes of games the above two conditions
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fully characterize the set of biased-belief equilibrium outcomes.

In Section 5 we focus on a class of games with strategic complementarity and spillovers (see, e.g.,

Bulow et al., 1985; Cooper and John, 1988), such as, input (or partnership) games, and price compe-

tition with differentiated goods. We show that in this class of games, there is a close relation between

implementing outcomes that Pareto-dominate all Nash equilibria and wishful thinking (Babad and

Katz, 1991; Budescu and Bruderman, 1995). We say that a biased belief exhibits wishful thinking if

it distorts the perceived opponent’s strategy in a way that yields the player a higher payoff relative

to the payoff induced by the true strategy of the opponent. We show that any strategy profile in

which both players use undominated strategies, and achieve a payoff higher than their best Nash

equilibrium payoff, can be implemented as the outcome of biased-belief equilibria exhibiting wishful

thinking, and, moreover, such a strategy profile can be implemented only by this kind of biased-belief

equilibria.

Our final result shows an interesting class of biased-belief equilibria that exist in all games. We

say that a strategy is undominated Stackelberg if it maximizes a player’s payoff in a setup in which

the player can commit to an undominated strategy, and his opponent reacts by best-replying to this

strategy. We show that every game admits a biased-belief equilibrium in which one of the players

is “rational” in the sense of having a constant belief about the opponent’s strategy, and always

playing his undominated Stackelberg strategy, while the opponent is “flexible” in the sense of having

undistorted beliefs and best-replying to the player’s true strategy.

We conclude by presenting additional examples of interesting biased-belief equilibria in three

specific families of games: (1) Prisoner’s Dilemma with an additional “withdrawal” action, (2) the

Centipede, and (3) the traveler’s dilemma.

The structure of this paper is as follows. Section 2 describes the model. In Section 3 we analyze

the relations between biased-belief equilibria and Nash equilibria. In Section 4 we characterize the

set of biased-belief equilibrium outcomes. Section 5 focuses on games with strategic complementarity

and show the close relations between “good” biased-belief equilibrium outcomes and wishful thinking.

In Section 6 we study the relation between biased-belief equilibrium and strategies played by a Stac-

kelberg leader. Finally, we present a few additional examples of interesting biased-belief equilibrium

in Section 7. We conclude with a discussion in Section 8.
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2 Model

2.1 Underlying game

Let i ∈ {1, 2} be an index used to refer to one of the players (he) in a two-player game, and let j be an

index referring to the opponent (she). Let G = (S, π) be a normal-form two-player game (henceforth,

game), where S = (S1, S2) and each Si is a convex closed set of strategies. We denote by π = (π1, π2)

players’ payoff functions, i.e. πi : S → R is function assigning each player a payoff for each strategy

profile. We use si to refer to a typical strategy of player i. We assume each payoff function πi (si, sj)

to be twice differentiable in both parameters and weakly concave in the first parameter (si).

In most of the examples and applications presented in the paper, the set of strategies is, either:

1. a simplex over a finite set of pure actions, where each strategy corresponds to a mixed action

(i.e., Ai is a finite set of pure actions, and Si = ∆ (Ai)), and the vN-M payoff function is linear

with respect to the mixing probability, or

2. an interval in R (e.g., each player chooses a real number representing quantity, price or effort).

Let BR (resp., BR−1) denote the (inverse) best reply correspondence, i.e.,

BR (si) =
{
sj ∈ Sj |sj = argmaxs′′∈S′

(
πj
(
si, s

′
j

))}

is the set of best replies against strategy si ∈ Si, and

BR−1 (si) =
{
sj ∈ Sj |si = argmaxs′

i
∈Si

(πi (s′i, sj))
}

is the set of strategies for which si is a best-reply against them.

2.2 Biased-Belief Function

We start here with the definition of biased belief functions that describe how players’ beliefs are

distorted. A biased belief ψi : Sj → Sj is a continuous function that assigns for each strategy of the

opponent, a (possibly distorted) belief about the opponent’s play. That is, if the opponent plays sj

, then player i believes that the opponent plays ψi (sj). We call sj the opponent’s real strategy, and

we call ψi (sj) the opponent’s perceived (or biased) strategy. Let Id be the undistorted (identity)

function, i.e., Id (s) = s for each strategy s. A biased belief ψ is blind if the perceived opponent’s

strategy is independent of the opponent’s real strategy, i.e., if ψ (sj) = ψ
(
s′j
)
for each sj , s′j ∈ Sj.



2.3 Biased-Belief Equilibrium 7

With a slight abuse of notation we use si to denote also the blind biased belief ψj that is always equal

to si.

A biased game is a pair consisting of an underlying game and a profile of biased beliefs. Formally:

Definition 1. A biased game (G,ψ) is a pair where G = (S, π) is a normal-form two-player game,

and ψ = (ψ1, ψ2) is a pair of biased beliefs.

A pair of strategies is a Nash equilibrium of a biased game, if each strategy is a best reply against

the perceived strategy of the opponent. Formally,

Definition 2. A profile of strategies s = (s∗1, s∗2) is a Nash equilibrium of the biased game (G,ψ) if each

s∗i is a best reply against the perceived strategy of the opponent, i.e., s∗i = argmaxsi∈∆(Ai)
(
πi
(
si, ψi

(
s∗j
)))

.

Let NE (G,ψ) ⊆ S1 × S2 denote the set of all Nash equilibria of the biased game (G,ψ).

A standard argument relying on Kakutani fixed-point theorem implies that any biased game (G,ψ)

admits a Nash equilibrium (i.e., that NE (G,ψ) 6= ∅).

2.3 Biased-Belief Equilibrium

We are now ready to define our equilibrium concept. A biased-belief equilibrium is a pair consisting of

a profile of biased beliefs and a profile of strategies, such that: (1) each strategy is a best reply to the

perceived strategy of the opponent, and (2) each biased belief is a best reply to the partner’s biased

belief, in the sense that any agent who chooses a different biased-belief function is outperformed

in at least one equilibrium in the new biased game (relative to the agent’s payoff in the original

equilibrium). The refinement of biased-belief equilibrium requires that such a deviator is outperformed

in all equilibria of the induced biased game. Formally:

Definition 3. A biased-belief equilibrium (abbr., BBE) is a pair (ψ∗, s∗), where ψ∗ = (ψ∗1 , ψ∗2)

is a profile of biased beliefs and s∗ = (s∗1, s∗2) is a profile of strategies satisfying: (1)
(
s∗i , s

∗
j

)
∈

NE (G,ψ∗), and (2) for each player i and each biased belief ψ′i, there exists a strategy profile
(
s′i, s

′
j

)
∈

NE
(
G,
(
ψ′i, ψ

∗
j

))
, such that the following inequality holds: πi

(
s′i, s

′
j

)
≤ πi

(
s∗i , s

∗
j

)
. A biased-belief

equilibrium is strong if the inequality πi
(
s′i, s

′
j

)
≤ πi

(
s∗i , s

∗
j

)
holds for every strategy profile

(
s′i, s

′
j

)
∈

NE
(
G,
(
ψ′i, ψ

∗
j

))
.

It is immediate that any strong biased-belief equilibrium is a biased-belief equilibrium.

Strategy profile s∗ = (s∗1, s∗2) is a (strong) biased-belief equilibrium outcome if there exist a profile

of biased beliefs ψ∗ = (ψ∗1 , ψ∗2) such that (ψ∗, s∗) is a (strong) biased-belief equilibrium. In this case

we say that the biased belief ψ∗ supports (or implements) the outcome s∗.
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3 Biased-Belief Equilibrium Outcomes and Nash Equilibria

In this section we present a few results that relate between Nash equilibria of the underlying game

and biased-belief equilibria.

3.1 Nash Equilibria and Distorted Beliefs

We begin with a simple observation that shows that in any biased-belief equilibrium in which the

outcome is not a Nash equilibrium, at least one of the players must distort the opponent’s perceived

strategy. The reason for this observation, is that if both players have undistorted beliefs, then it must

be that each agent best replies to the partner’s strategy, which implies that the outcome is a Nash

equilibrium of the underlying game.

The following example demonstrates that some Nash equilibria cannot be supported as the out-

comes of biased-belief equilibria with undistorted beliefs.

Example 1 (Cournot Equilibrium cannot be supported by undistorted beliefs, yet it can be supported

by blind beliefs). Consider the following symmetric Cournot game G = (S, π): Si = [0, 1] and

πi (si, sj) = si · (1− si − sj) for each player i. The interpretation of the game is as follows. Each si

is interpreted as the quantity chosen by firm i, the price of both goods is determined by the linear

inverse demand function p = 1− si − sj , and the marginal cost of each firm is normalized to be zero.

The unique Nash equilibrium of the game is s∗i = s∗j = 1
3 , which yields both players a payoff of 1

9 .

Assume to the contrary that this outcome can be supported as a biased-belief equilibrium by the

undistorted beliefs ψ∗i = ψ∗j = Id. Consider a deviation of player 1 to the blind belief ψ′1 ≡ 1
4 (i.e.,

the strategy of the follower in a sequential Stackelberg game). The unique equilibrium of the biased

game
(
G,
( 1

4 , Id
))
is s′1 = 1

2 , s
′
2 = 1

4 , which yields the deviator a payoff of 1
8 >

1
9 .

The unique Nash equilibrium s∗i = s∗j = 1
3 can be supported as the outcome of the strong biased-belief

equilibrium
(( 1

3 ,
1
3
)
,
( 1

3 ,
1
3
))

with blind beliefs., in which each agent believes the opponent playing
1
3 regardless of the opponent’s actual play, and the agent plays the unique best reply to this belief,

which is the strategy 1
3 .

3.2 Any Nash equilibrium is a BBE outcome

The following result generalizes the second part of Example 1, and shows that any Nash (Strict)

equilibrium is an outcome of a (strong) biased-belief equilibrium in which both players have blind

beliefs.
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Proposition 1. Let (s∗1, s∗2) be a Nash (strict) equilibrium of the game G = (S, π). Let ψ∗1 ≡ s∗2 and

ψ∗2 ≡ s∗1. Then ((ψ∗1 , ψ∗2) , (s∗1, s∗2)) is a (strong) biased-belief equilibrium.

Proof. The fact that (s∗1, s∗2) is a Nash equilibrium of the underlying game implies that (s∗1, s∗2) is

an equilibrium of the biased game (G, (ψ∗1 , ψ∗2)). The fact, that the beliefs are blind, implies that

for any biased belief ψ′i there is an equilibrium in the biased game
(
G,
(
ψ′i, ψ

∗
j

))
in which player j

plays sj , and that player i gains at most πi
(
s∗i , s

∗
j

)
, which implies that ((ψ∗1 , ψ∗2) , (s∗1, s∗2)) is a biased-

belief equilibrium. Moreover, if (s∗1, s∗2) is a strict equilibrium, then in any equilibrium of any biased

game
(
G,
(
ψ′i, ψ

∗
j

))
, player j plays s∗j , and that player i gains at most πi

(
s∗i , s

∗
j

)
, which implies that

((ψ∗1 , ψ∗2) , (s∗1, s∗2)) is a strong biased-belief equilibrium.

An immediate corollary of Prop. 1 is that every game admits a biased-belief equilibrium.

Corollary 1. Every game admits a biased-belief equilibrium.

4 Characterization of BBE Outcomes

We begin by presenting two necessary conditions for a strategy profile to be a biased-belief outcome in

all games. The following sections focus on specific classes of games, and fully characterize biased-belief

equilibrium outcomes in these games.

4.1 Necessary Conditions for Being a BBE Outcome in all Games

Recall, that a strategy si of player i is strictly dominated if there exists another strategy s′i of player

i, such that ui (si, sj) < ui (s′i, sj) for each strategy sj of player j.

We say that a strategy is undominated if it is not strictly dominated. We say that a strategy

profile is undominated if both strategies in the profile are undominated. We say that an undominated

strategy profile (s∗1, s∗2) is an undominated Pareto-optimal profile if πi (s∗1, s∗2) ≥ πi (s′1, s′2) for each

undominated strategy profile (s′1, s′2) and each player i.

Let SUi ∈ Si denote the set of undominated strategies of player i. Note, that SUi is not necessarily

a convex set.

An undominated minmax payoff for player i is the maximal payoff playeri can guarantee to himself

in the following process: (1) player j chooses an arbitrary undominated strategy, and (2) player i

chooses a strategy (after observing player j’s strategy). Formally:

Definition 4. Given game G = (A, u), let MU
i , the undominated minmax payoff of player i, be
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defined as follows:

MU
i = min

sj∈SU
j

(
max
si∈Si

πi (si, sj)
)
.

Observe that the undominated minmax is weakly larger than the standard maxmin, i.e., MU
i ≥

minsj∈Sj (maxsi∈Si πi (si, sj)) ,with an equality if player j does not have any strictly dominated stra-

tegy (i.e., if SUj = Sj).1

Observe that BR−1 (si) 6= ∅ iff si ∈ SUi . The following simple result shows that any biased-belief

equilibrium outcome is an undominated strategy profile that induces each player a payoff above the

player’s undominated minmax payoff. Moreover, within the family of interval games with monotone

externalities, any undominated strategy profile with this property is the outcome of a strong biased-

belief equilibrium.

Proposition 2. If a strategy profile s∗ = (s∗1, s∗2) is a biased-belief equilibrium outcome, then (1) the

profile s∗ is undominated; and (2) πi (s∗) ≥MU
i .

Proof. Assume that s∗ = (s∗1, s∗2) is a biased-belief equilibrium outcome. This implies that each s∗i

is a best reply to the player’s distorted belief, which implies that each s∗i is undominated. Assume

to the contrary, that , πi (s∗) < MU
i . Then, by deviating to the undistorted function Id, player i can

guarantee a fitness of at least MU
i in any distorted equilibrium.

4.2 Zero-Sum Games, Dominant Strategies and Doubly Symmetric Ga-

mes2

In this section we characterize biased-belief equilibrium outcomes in three classes of games: zero-sum

games, games with a dominant action, and doubly symmetric games.

Zero-sum games. Recall that a game is zero sum if there exists c ∈ R+ such that π (si, sj) = c for

each strategy profile (si, sj) ∈ S. It is immediate that the undominated minmax of a zero sum game

coincides with the game’s unique value. Thus, Proposition 2 implies that introducing biased beliefs

to zero-sum games do not affect the equilibrium payoff.

Corollary 2. The unique Nash equilibrium payoff of a zero-sum game is also the unique payoff in

any biased-belief equilibrium.
1Note, that the undominated minmax payoff might be strictly higher than the undominated maxmin payoff due

to the non-convexity of Si
U , i.e., player i might be able to guarantee only a lower payoff if player j would choose his

undominated strategy after observing player i’s chosen strategy.
2Y: Internal comment: I have tried the current location for these results, as your comment to the previous revision

suggested they shouldn’t be in Section 3, but later in the paper.



4.2 Zero-Sum Games, Dominant Strategies and Doubly Symmetric Games3 11

Games with a dominant strategy. Next we show that if at least one of the players has a dominant

strategy, then any biased-belief equilibrium outcome must be a Nash equilibrium. Formally:

Proposition 3. If a game admits a dominant strategy s∗i for player i, then any biased-belief equili-

brium outcome is a Nash equilibrium of the underlying game.

Proof. Observe that s∗i is the unique best-reply of player i to any perceived strategy of player j,

and, as a result, player i plays the dominant action s∗i in any biased-belief equilibrium. Assume to

the contrary that there is a biased-belief equilibrium outcome in which player j does not best-reply

against s∗i . Consider a deviation of player j of choosing the undistorted belief Id. Observe, that player

i still plays his dominant action s∗i , and that player j best-replies to s∗i in any Nash equilibrium of

the induced biased game, and as a result, player j achieves a strictly higher payoff, and we get a

contradiction.

Doubly symmetric games. One might expect that biased beliefs do not play an essential role in

games, in which the interests of both players perfectly coincide (as, is the case in related equilibrium

notions in the literature, such as, the notion of rule-rational equilibrium in Heller and Winter, 2016).

The following example shows that this is not the case, and that biased-beliefs equilibrium outcomes

might differ from Nash equilibria even in doubly symmetric games (e.g., Weibull, 1997, Def. 1.11) in

which π (si, sj) = π (sj , si) for each strategy profile (si, sj) ∈ S.

Example 2 (Doubly symmetric game with a non-Nash biased-belief equilibrium outcome). Consider

the doubly symmetric game presented in Table 1. In this example we show that the non-Nash

strategy profile (a, a) is a biased-belief equilibrium outcome. We denote each strategy (=mixed

action) si ∈ Si = ∆ ({a, b, c, d}) as a vector (α, β, γ, δ) (with α + β + γ + δ = 1), where α (resp.,

β, γ, δ) denotes the probability of playing action a, (resp., b, c, d), and we identify each action with

the degenerate strategy assigning a mass of one to this action (i.e., a ≡ (1, 0, 0, 0). Let ψ∗i be

the following (continuous) biased-belief function: ψ∗i (α, β, γ, δ) = (0, 0, α, β + γ + δ). We show that

((ψ∗1 , ψ∗2) , (a, a)) is a biased-belief equilibrium. Observe first that a is a best-reply to the opponent’s

perceived strategy (c), i.e., (a, a) ∈ NE (G, (ψ∗1 , ψ∗2)). Next consider a deviator who chooses a different

belief bias ψ′i. Observe that in order for the deviator to be able to archive a payoff higher than the

original equilibrium payoff of 2, the deviator must play action b with a positive probability. This

implies that the opponent’s unique best-reply to the deviator’s perceived strategy is action d, and,

thus, the deviator’s payoff is at most one.
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a b c d
a 2 3 0 0
b 3 5 0 0
c 0 0 0 0
d 0 0 0 1

Table 1: Payoff matrix for both players in a doubly symmetric game

4.3 Games with Two Pure Actions

In this section we fully characterize biased-belief equilibrium outcomes in games with two pure actions.

We say that game G = (S, π) has two pure actions if the set of strategies is a simplex over two actions

(i.e., Si = 4 ({ai, bi}) for each player i), and π is linear (i.e., a vN-M utility function).

The following result shows that, a strategy profile is a biased belief equilibrium outcome iff is is

undominated and it yields each player a payoff weakly higher than the player’s undominated minmax

payoff. Formally,

Proposition 4. Let G = (Si = 4 ({ai, bi}) , π) be a game with two pure actions. Then the following

two statements are equivalent:

1. Strategy profile (s∗1, s∗2) is a biased-belief equilibrium outcome.

2. Strategy profile (s∗1, s∗2) is undominated, and πi (s∗1, s∗2) ≥MU
i for each player i.

Proof. Proposition 2 implies that “1.⇒2.”. We now show that “2.⇒1.”. Assume that (s∗1, s∗2) is undo-

minated, and πi (s∗1, s∗2) ≥MU
i . For each player j, let spj be an undominated strategy that guarantees

that player i obtains, at most, his minmax payoff MU
i , i.e., spj = argminsj∈SU

j
(maxsi∈Si

πi (si, sj)) .

Assume first that one of the players has a dominant action. Say, without loss of generality, that

action ai is dominant for player i. This implies that SUi = {ai}, and thus MU
j = maxsj (πj (ai, sj)).

This implies that if strategy profile (s∗1, s∗2) is undominated, and satisfies πj (s∗1, s∗2) ≥ MU
j for each

player i, then it must be that s∗i = ai, and
(
ai, s

∗
j

)
is a Nash equilibrium of the underlying game,

which implies that
(
s∗i = ai, s

∗
j

)
is a biased-belief equilibrium outcome (due to Proposition 1).

We are left with the case in which the game does not admit any dominant actions. This implies that

for each player j, there is a perceived strategy ŝj ∈ Sj such that both actions are best replies against

sj , i.e., such that Si = BR−1 (ŝj). We conclude by showing that ((ŝ2, ŝ1) , (s∗1, s∗2)) is a biased-belief

equilibrium (in which both players have blind beliefs). It is immediate that (s∗1, s∗2) ∈ NE (ŝ2, ŝ1)

(because any strategy is a best reply against each ŝj). Next, observe that for any deviation of player

i to a different biased-belief ψ′i, there is a Nash equilibrium of the biased game (G, (ψ′i, ŝi))in which

player j plays spj , and, as a result, player i obtains a a payoff of at most MU
i , which implies that the

deviation is not profitable.
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The following example demonstrates how to implement the best symmetric outcome in the Hawk-

Dove game.

Example 3 (Implementing cooperation as a BBE outcome in Hawk-Dove games4). Consider the

Hawk-Dove game (AKA, “Chicken”) described in Table 2. Let α ∈ [0, 1] denote the mixed strategy

assigning probability of α to action di. The best symmetric strategy profile of (d1, d2) ≡ (1, 1)

can be supported as the outcome of the strong biased-belief equilibrium ((ψ∗1 , ψ∗2) , ((d1, d2))), where

ψ∗i (α) = 2−α
2 . On the equilibrium path each player i plays di and believes that his opponent is

mixing equally between the two actions. If the opponent plays sj 6= dj , then player i believes that the

opponent plays dj with probability strictly more than 50%, and as a result player i plays the unique

best reply to this belief, namely hi, and the opponent gets a payoff of at most 1.

Table 2: Hawk-Dove Game
d2 h2

d1 3, 3 1, 4

h1 4, 1 0, 0

4.4 Games with a Continuum Set of Actions

In this section we fully characterize biased-belief equilibrium outcomes in “well-behaved” games in

which the set of strategies is an interval.

We say that a game G = (S, π) is well-behaved interval if: (1) each Si is a convex subset of R

(i.e., an interval), (2) for each player i the payoff function πi (si, sj) is strictly concave in the agent’s

strategy si, and weakly convex in the opponent’s strategy sj .

Well=behaved interval games are common in many economic environments. some examples in-

clude Cournot competition, Price competition with differentiated goods, public good games, and

Tullock Contests.

The following result shows that in well-behaved interval games, any undominated strategy profile

that induces each player a payoff strictly above the player’s undominated minmax payoff can be

implemented as an outcome of a strong biased-belief equilibrium. Formally,

Theorem 1. Let G = (S, π) be a well-behaved interval game. If profile (s∗1, s∗2) is undominated and

πi (s∗1, s∗2) > MU
i for each player i, then (s∗1, s∗2) is a strong biased-belief equilibrium outcome.

4Y: Internal comment - I shortened and simplified the example in response to your previous comment that suggest
that the (more general) example is not essential to the paper.
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Proof. Assume that (s∗1, s∗2) is undominated and πi (s∗1, s∗2) > MU
i for each player i. For each player j,

let spj be an undominated strategy that guarantees that player i obtains, at most, his minmax payoff

MU
i , i.e., spj = argminsj∈SU

j
(maxsi∈Si

πi (si, sj)) . The strict convexity of πi (si, sj) with respect to si

implies that the best-reply correspondence is a continuous one-to-one function. Thus, BR−1 (si) is

a singleton for each strategy si, and we identify BR−1 (si) with the unique element in this singleton

set.

For each ε > 0 and each player i, let ψεi be defined as follows:

ψεi
(
s′j
)

=


ε−|s′j−sj|

ε ·BR−1
i (s∗i ) + |s

′
j−sj|
ε ·BR−1

i (spi )
∣∣s′j − sj∣∣ ≤ ε

BR−1
i (spi )

∣∣s′j − sj∣∣ > ε.

We now show that for a sufficiently small ε > 0, ((ψε1, ψε2) , (s∗1, s∗2)) is a strong biased-belief equili-

brium. Observe first that the definition of (ψε1, ψε2) immediately implies that {(s∗1, s∗2)} = NE (G, (ψε1, ψε2)).

Next, consider a deviation of player i to a an arbitrary biased belief ψ′i. Consider any equilibrium(
s′i, s

′
j

)
of the biased game

(
G,
(
ψ
′

i, ψ
ε
j

))
. If

∣∣s′j − sj∣∣ > ε, then the definition of ψεi
(
s′j
)
implies that

spi = s′i, and that player j achieves a payoff of at most MU
i < πi (s∗1, s∗2). The convexity of the payoff

function πi (s1, s2) with respect to the opponent’s strategy sj , and standard continuity arguments,

imply that for a sufficiently small ε > 0, player i’s payoff is at most πi
(
s∗i , s

∗
j

)
, which shows that

((ψε1, ψε2) , (s1, s2))is a strong biased-belief equilibrium.

An immediate corollary of Proposition 1 and Theorem 1 is the full characterization of biased-

belief equilibrium outcomes in well-behaved interval games: A strategy profile is a BBE outcome,

essentially, if and only if (1) it is undominated, and (2) it induces each player a payoff above the

player’s undominated minmax payoff. Formally,

Corollary 3. Let G = (S, π) be a well-behaved one-denominational game.

1. If profile (s∗1, s∗2) is undominated and πi (s∗1, s∗2) > MU
i for each player i, then (s∗1, s∗2) is a strong

biased-belief equilibrium outcome.

2. If (s∗1, s∗2) is a biased-belief equilibrium outcome, then (s∗1, s∗2) is undominated and πi (s∗1, s∗2) ≥

MU
i for each player i.

The following example demonstrates a biased-belief equilibrium that induces the undominated

efficient outcome in Cournot competition.

Example 4 (Biased belief equilibrium that yields the efficient Outcome in Cournot game). Con-

sider the symmetric Cournot game with linear demand of Example 1: G = (S, π): Si = [0, 1] and
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πi (si, sj) = si · (1− si − sj) for each player i. Let ψ∗i be defined for each player i as follows:

ψ∗i (sj) =


0.5 sj ≤ 0.25

1− 2 · sj 0.25 ≤ sj ≤ 0.5

0 0.5 ≤ sj.

That is, on the equilibrium path the opponent plays 0.25, and the agent believes that the opponent

plays 0.5, which implies that the agent’s best-reply strategy is 0.25. If the opponent deviates and

plays a lower strategy, it does not affect the agent’s perceived strategy (which remains equal to 0.25).

Finally, if the opponent deviates and plays a higher strategy than 0.25, then the agent’s perceived

strategy becomes lower, such that the agent’s best-reply strategy becomes higher, and the opponent

is outperformed.5 This implies that
(
(ψ∗1 , ψ∗2) ,

( 1
4 ,

1
4
))

is a biased-belief equilibrium, which induces

the efficient symmetric outcome of
( 1

4 ,
1
4
)
, in which both firms equally share the monopoly profit.

5 Wishful thinking and Strategic Complementarity

In this section we focus on the family of games with strategic complementarity and positive spillovers,

and we show that in such games, there is a close relation between (1) achieving “socially desirable”

outcomes that Pareto improve all Nash equilibria, and (2) monotone biased belief equilibria that rely

on wishful thinking. This present a novel theoretical foundation for the tendency of people to exhibit

wishful thinking in some situations (see, e.g., Babad and Katz, 1991; Budescu and Bruderman, 1995;

Mayraz, 2013).

5.1 Games with Strategic Complementarity

We say that a game exhibits strategic complementarity and spillovers if: (1) the set of strategies of each

player is an interval, (2) positive spillovers – each player strictly gains if the partner chooses a higher

strategy (interpreted as a higher effort/contribution by the partner), (3) strategic complementarity

(Supermodularity) – an increase in the opponent’s strategy increases the marginal return to the

agent’s strategy, and (4) concavity – the payoff function is strictly concave in one’s own strategy.

Formally:

Definition 5. Game G = (S, π) exhibits strategic complementarity and spillovers if: (1) each Si ⊆ R,

and for each si, sj ∈ (0, 1) (2) ∂πi(si,sj)
∂sj

> 0, (3) ∂2πi(si,sj)
∂si∂sj

> 0, and (4) ∂2πi(si,sj)
∂s2

i
< 0.

5Y: Internal comment: the recent couple of sentences are new in response to your comment for adding a couple of
sentences with intuition about the function ψ∗i (sj).
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Games that exhibit strategic complementarity and positive spillovers are common in economics

(see, e.g., Bulow et al., 1985; Cooper and John, 1988). The following two examples demonstrate two

families of such games.

Example 5. Input games (aka, partnership games). Let si ∈ R+ be the effort (input) of player i

in the production of a public good. The value of the public good, f (s1, s2), which is enjoyed by

both players, is a supermodular function that is increasing in the effort of each player. The payoff of

each player is equal to the value of the public good minus a concave cost of the exerted effort (i.e.,

πi (si, sj) = f (s1, s2)− g (si)). A specific example for such an input game is presented in Example 7

below.

Example 6. Price competition with differentiated goods. Let si ∈ R+ denote the price of the good

produced by firm i. The demand for good i is given by function qi (si, sj), which is decreasing in si

and increasing in sj . The payoff of firm i is given by πi (si, sj) = (si − ci) · qi (si, sj), where ci is the

marginal cost of production of firm i. Finally, we assume that marginal profit of a firm is increasing in

the opponent’s price (i.e., πi (si, sj) is supermodular). For example, consider the payoff of symmetric

linear city model (Hotelling) in which for each firm i, Si = R+, ci = c and

qi (si, sj) =


0 si−sj+t

2·t < 0

si−sj+t
2·t 0 < si−sj+t

2·t < 1

1 si−sj+t
2·t > 1,

where we interpret t > 0 as the consumer’s travel cost per unit of distance (where a continuum of

consumers are equally spaced on a unit interval, one of the firms is located at zero, and the other

firm is located at one). One can show that the unique Nash equilibrium of this example is given by

si = sj = c+ t.

It is well known that games with strategic complementarity admit pure Nash equilibria, and, that

one of these equilibria s̄ is highest in the sense that s̄i ≥ s′i for each player i and each strategy s′i

that is played in a Nash equilibrium (see, e.g., Milgrom and Roberts, 1990). Under the assumption

of positive spillovers, this equilibrium s̄i Pareto-dominates all other Nash equilibria.

We say that a strategy profile (s1, s2) is Nash improving if it induces each player a payoff higher

than the player’s payoff in the highest Nash equilibrium (i.e., if si > s̄i for each player i, where s̄ is

the highest Nash equilibrium).
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5.2 Wishful Thinking and Monotonicity

In this section we define two properties of biased-belief equilibria: wishful thinking and monotonicity.

A biased belief equilibrium exhibits wishful thinking if the perceived opponent’s strategy yields

the agent a higher payoff relative to the real opponent’s strategy for all strategy profiles. It exhibits

wishful thinking in equilibrium if it satisfies this property with respect to the strategy the opponent

plays on the equilibrium path. Formally:

Definition 6. Biased-belief equilibrium ((ψ∗1 , ψ∗2) , (s∗1, s∗2)) exhibits wishful thinking (in equilibrium)

if πi (si, ψ∗i (sj)) ≥ πi (si, sj) for all si, sj with a strict inequality for some si, sj (πi (si, ψ∗i (sj)) ≥

πi
(
si, s

∗
j

)
for all si ∈ Si with a strict inequality for some si ∈ Si).

Next, we define monotone biased beliefs in interval games. A biased belief equilibrium is monotone

if each bias function is increasing with respect to the opponent’s strategy. It is monotone in equi-

librium if it satisfies this monotonicity property with respect to opponent’s strategies that improve

the opponent’s payoff relative to the equilibrium payoff . Formally:

Definition 7. Let G = (S, π) be a game in which the set of strategies of each player is an interval

(i.e., Si ⊆ R for each player i). Biased belief equilibrium ((ψ∗1 , ψ∗2) , (s∗1, s∗2)) is monotone if sj ≥

s′j ⇒ψ∗i (sj) ≥ ψ∗i
(
s′j
)
for each player i and each pair of strategies sj and s′j with a strict inequality

for some sj > s′j The biased-belief equilibrium ((ψ∗1 , ψ∗2) , (s∗1, s∗2)) is monotone in equilibrium if

sj > s∗j ⇒ψ∗i (sj) > ψ∗i
(
s∗j
)
and sj < s∗j ⇒ψ∗i (sj) < ψ∗i

(
s∗j
)
for each strategy sj that satisfies

πj (s∗i , sj) > πj
(
s∗i , s

∗
j

)
).

To the extent that biased beliefs emerge through signals that players receive from their counter-

parts regarding their intentions, the monotonicity condition can be interpreted as requiring that these

signals affect beliefs in the right direction but not necessarily in the right magnitude.

5.3 Results

The following result shows that any undominated Nash-improving strategy profile (s∗1, s∗2) can be

supported by a monotone biased-belief equilibrium that exhibits wishful thinking. Moreover, any

biased-belief equilibrium that yields Nash-improving strategy profile as its outcome must satisfy

monotonicity and wishful thinking in equilibrium. The intuition is as follows.6 In a supermodular

game a player’s incentives to cooperate increase with the level of cooperation of the opponent. Hence

wishful thinking allows a player to credibly commit to a high level of cooperation which in turns

6Y (internal): new intuitive argument for the result, as you suggested in the previous version.
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increases the level of cooperation of his opponent yielding a Pareto improvement over the Nash

equilibrium. Formally,

Proposition 5. Let G = (S, π) be a game exhibiting strategic complementarity and spillovers. Let

(s∗1, s∗2) be an undominated Nash-improving strategy profile. Then:

1. (s∗1, s∗2) is an outcome of a monotone strong biased-belief equilibrium exhibiting wishful thinking.

2. Any biased-belief equilibrium ((ψ∗1 , ψ∗2) , (s∗1, s∗2)) is monotone in equilibrium, and it exhibits

wishful thinking in equilibrium.

Proof. Part 1: The strict convexity of the payoff function π implies that the best-reply correspon-

dence is a one-to-one function. The supermodularity of π implies that the function BR−1
i is strictly

increasing. The fact that (s∗1, s∗2) is Nash improving implies that s∗j < BR−1
i

(
s∗j
)
for each player j.

For each ε > 0 and each player i, let ψεi be defined as follows:

ψεi
(
s′j
)

=



s′j s′j ≤ s∗j − ε.(
1− s∗j−s

′
j

ε

)
·BR−1 (s∗i ) + s∗j−s

′
j

ε · s′j s∗j − ε < s′j ≤ s∗j

BR−1
i (s∗i ) s∗j < s′j ≤ BR

−1
i

(
s∗j
)

s′j s′j > BR−1
i (s∗i )

Observe that ψεi is monotone. The fact that the game has positive spillovers implies that ψεi exhibits

wishful thinking. We now show that for a sufficiently small ε > 0, ((ψε1, ψε2) , (s∗1, s∗2)) is a strong

biased-belief equilibrium. Observe first that (s∗1, s∗2) ∈ NE (G, (ψε1, ψε2)). Consider a deviation of

player j to ψ′j . Consider any equilibrium of the biased game
(
G,
(
ψεi , ψ

′
j

))
. If

∣∣s′j − s∗j ∣∣ > ε, then the

definition of ψεi implies that player i best replies to the true strategy of player j (i.e., ψεi
(
s′j
)

= s′j),

and, thus, player j achieves at most the payoff of the highest Nash equilibrium, which is less than

πj (s∗1, s∗2). The fact that the payoff function πj (s1, s2) is supermodular and has positive spillovers,

and standard continuity arguments, imply that for a sufficiently small ε > 0, player j’s payoff is at

most πj
(
s∗i , s

∗
j

)
, which shows that ((ψε1, ψε2) , (s∗1, s∗2)) is a strong biased-belief equilibrium.

Part 2: Let ((ψ∗1 , ψ∗2) , (s∗1, s∗2)) be a biased-belief equilibrium. The fact that (s∗1, s∗2) ∈ NE (G, (ψ∗1 , ψ∗2))

implies that ψ∗i
(
s∗j
)

= BR−1 (s∗i ) > s∗j for each player i, which, due to the game being supermodular

and having positive spillovers, implies the wishful thinking property in equilibrium. Next, let s′j

be a better reply of player j against s∗i (relative to s∗j ), i.e., assume that πj
(
s∗i , s

′
j

)
> πj

(
s∗i , s

∗
j

)
.

Due to the fact that (s∗1, s∗2) is Nash improving, this implies that s′j < s∗j . Assume to the con-

trary that ψ∗i
(
s′j
)
≥ ψ∗i

(
s∗j
)
. Due to the supermodularity of the game this inequality implies that
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BR
(
ψ∗i
(
s′j
))
≥ BR

(
ψ∗i
(
s∗j
))
. Let ψ′j ≡ BR−1 (s′j). Then the unique equilibrium of the biased game(

G,
(
ψ∗i , ψ

′
j

))
is
(
BR

(
ψi
(
s′j
))
, s′j
)
, which due to positive spillovers

πj
((
BR

(
ψi
(
s′j
))
, s′j
))
≥ πj

((
BR

(
ψi
(
s∗j
))
, s′j
))

= πj
(
s∗i , s

′
j

)
> πj

(
s∗i , s

∗
j

)
,

which contradicts ((ψ∗1 , ψ∗2) , (s∗1, s∗2)) being a distribution equilibrium.

The following example demonstrates a monotone biased-belief equilibrium exhibiting wishful thin-

king that induces the undominated efficient outcome in an input game.

Example 7 (Nash improving BBE in an input game). Consider the following input game (which, is

presented, and analysed in a different setup in Heller and Sturrock, 2017). Let Si = Sj = [0,M ], and

let the payoff function be πi(si, sj , ρ) = si · sj − s2
i

2ρ , where the parameter 1
ρ is interpreted as the cost

of effort. One can show that: (1) the best-reply function of each agent is playing an effort that is ρ<1

times smaller than the opponent (i.e., BR (sj) = ρ · sj), (2) the unique Nash equilibrium is exerting

no efforts si = sj = 0, (3) the highest undominated strategy of each player i is si = ρ ·M , and (4) the

undominated strategy profile (ρ ·M,ρ ·M) is Nash improving and induce both players the best payoff

among all undominated symmetric strategy profiles. Let ψ∗i be the following biased-belief function

ψ∗i (sj) =


sj

ρ sj < ρ ·M

1 sj ≥ ρ ·M.

Observe that ψ∗i is monotone and exhibiting wishful thinking. We now show that ((ψ∗1 , ψ∗2) , (ρ ·M,ρ ·M))

is a biased-belief equilibrium. Observe that BRi (ψ∗i (sj)) = BRi

(
sj

ρ

)
= sj for any sj ≤ ρ ·M , and

that BRi (ψ∗i (sj)) = BR (1) = ρ for any sj ≥ ρ. This implies that (ρ ·M,ρ ·M) ∈ NE (G, (ψ∗1 , ψ∗2)),

and that for any player i, any biased-belief ψ′i, and any Nash equilibrium (s′1, s′2)of the biased

game (G, (ψ′i, ψj)), s′j = min (s′i, ρ). This implies that πi (s′1, s′2) ≤ πi (ρ, ρ), which shows that

((ψ∗1 , ψ∗2) , (ρ ·M,ρ ·M)) is a biased-belief equilibrium. Observe that this biased-belief equilibrium

induces only a small distortion in the belief of each player, assuming that ρ is sufficiently close to one:

|ψ∗i (sj)− sj | <
∣∣∣∣sjρ − sj

∣∣∣∣ < M · 1− ρ
ρ

.

Remark 1. Proposition 5 shows the strong relation between Nash improving biased-belief equilibria

and wishful thinking in games with strategies complementarity. If one studies the “opposite” family

of games with strategic substitutability (i.e., games that satisfy conditions (1-2 and (4) in Definition
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5, and the opposite inequality of condition (3), namely ∂2πi(si,sj)
∂si∂sj

< 0), then similar arguments to

the one presented in Proposition 5 yield an analogous result about the strong relation between Nash

improving biased-belief equilibria and pessimistic thinking in games with strategies substitutability.

6 BBE and Undominated Stackelberg Strategies

In this section we present an interesting class of biased-belief equilibria that exist in all games. In this

class, one of the players is “rational” in the sense that he plays his undominated Stackelberg strategy

(defined below) and has blind beliefs, while his opponent is “flexible” in the sense of having unbiased

beliefs.

A strategy is undominated Stackelberg if it maximizes a player’s payoff in a setup in which the

player can commit to an undominated strategy, and his opponent reacts by choosing the best reply

that maximizes player i’s payoff. Formally:

Definition 8. The strategy si is an undominated Stackelberg strategy if it satisfies

si = argmaxsi∈SU
i

(
maxsj∈BR(si) (πi (si, sj))

)
.

Let πStac
i = maxsi∈SU

i

(
maxsj∈BR(si) (πi (si, sj))

)
be the undominated Stackelberg payoff. Observe

that πStac
i ≥ πi (s∗1, s∗2) for any Nash equilibrium (s∗1, s∗2) ∈ NE (G).

Our next result shows every game admits a biased-belief equilibrium in which one of the players:

(1) has a blind belief, (2) plays his undominated Stackelberg strategy, and (3) obtains his undominated

Stackelberg payoff. The opponent has undistorted beliefs. Moreover, this biased-belief equilibrium is

strong if the undominated Stackelberg strategy is a unique best-reply to some undominated strategy

of the opponent. Formally:

Proposition 6. Game G = (S, π) admits a biased-belief equilibrium
(
(ψ∗i , Id) ,

(
s∗i , s

∗
j

))
for each

player i with the following properties: (1) ψ∗i is blind, (2) s∗i is an undominated Stackelberg strategy,

and (3) s∗j = maxsj∈BR(s∗i ) (πi (s∗i , sj)). Moreover, this biased-belief equilibrium is strong if {s∗i } =

BR−1 (s∗j).
Proof. Let s∗i be an undominated Stackelberg strategy of player i. Let s∗j = argmaxsj∈BR(s∗i ) (πi (s∗i , sj)).

Let s′j ∈ BR−1 (s∗i ) (
{
s′j
}

= BR−1 (si) with the additional assumption of the “moreover” part). We

now show that
((
ψ∗i ≡ s′j , Id

)
,
(
s∗i , s

∗
j

))
is a (strong) biased-belief equilibrium. It is immediate that(

s∗i , s
∗
j

)
∈ NE

(
G,
(
ψ∗i ≡ s′j , Id

))
. Next, observe that for any biased belief ψ′j there is an equilibrium

(in any equilibrium) of the biased game
(
G,
(
ψi, ψ

′
j

))
in which player i plays s∗i , and player j gain
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at most πj
(
s∗i , s

∗
j

)
, which implies that the deviation to ψ′j is not profitable to player j. If player i

deviates to a biased belief ψ′i, then in any equilibrium of the biased game (G, (ψ′i, ψj)) player i plays

some strategy s′i and gains a payoff of at most maxs′
j
∈BR(s′i)

(
πi
(
s′i, s

′
j

))
, and this implies that player

i’s payoff is at most πStac
i , and that he cannot gain by deviating. This shows that ((ψ∗1 , ψ∗2) , (s∗1, s∗2))

is a (strong) biased-belief equilibrium.

Example 8 (Biased-Belief equilibrium that yields the Stackelberg Outcome in Cournot game). Con-

sider the symmetric Cournot game with linear demand of Example 1: G = (S, π): Si = R+ and

πi (si, sj) = si · (1− si − sj) for each player i. Then
(
(0, Id) ,

( 1
2 ,

1
4
))

is a biased-belief equilibrium

that induces the Stackelberg outcome
( 1

2 ,
1
4
)
, and yields player 1 the Stackelberg leader’s payoff of 1

8

and yields player 2 the follower’s payoff of 1
16 . This is because: (1)

( 1
2 ,

1
4
)
∈ NE (0, Id), (2) for any

biased belief ψ′2, player 1 keeps playing 1
2 and as a result player 2’s payoff is at most 1

16 , and (3) for

any biased belief ψ′1, player 2 would best-reply to player’s 1 strategy, and thus player 1’s payoff would

be at most his Stackelberg payoff of 1
8 .

7 Additional Examples of Belief Biased Equilibria

In this section we present three examples of interesting biased-belief equilibria in specific games: (1)

prisoner’s dilemma with an additional “withdrawal” action, (2) the Centipede game, and (3) the

traveler’s dilemma.

7.1 Prisoner’s Dilemma with an Additional “Withdrawal” Action

As we have argued earlier (Claim 3) biased belief equilibrium outcomes coincide with Nash equilibria

in games that admit a dominant strategy. Hence defection is the unique biased belief equilibrium

in the prisoner’s dilemma game. However, in this section we show that adding weakly dominated

strategies (interpreted as “withdrawal”) to the prisoner’s dilemma can sustain cooperation in the

game as the outcome of a strong biased-belief equilibrium. This is done by means of biases under

which a player believe that his opponent is planing to withdraw from the game whenever he intends

to cooperate, which makes cooperation a rational move.

Table 3: Prisoner’s Dilemma Game with a Withdrawal Action
c d w

c 10,10 0,11 0,0
d 11,0 1,1 0,0
w 0,0 0,0 0,0
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Consider the variant of the Prisoner’s Dilemma game with a third “withdrawal” action as described

in Table 3. In this symmetric game both players get a high payoff of 10 if they both play action c

(interpreted as cooperation). If one player plays d (defection) and his opponent plays c, then the

defector gets 11 and the cooperator gets 0. If both players defect, then each of them gets a payoff

of 1. Finally, if either player plays action w (interpreted as withdrawal), then both players gets 0.

Observe that defection is a weakly dominant action, and that the game admits two Nash equilibria:

(w,w) and (c, c) inducing respective symmetric payoffs of zero and one.

We identify a mixed action with a vector (αc, αd, αw), where αc ≥ 0 (resp., αd ≥ 0, αw ≥ 0)

denotes the probability of choosing action c (resp., d, w). For each player i, let ψi be the following

biased-belief function:

ψ∗i (αc, αd, αw) = (0, αd, αc + αw) .

We now show ((ψ∗1 , ψ∗2) , (c, c)) is a strong biased-belief equilibrium, in which both players obtain a

high payoff of 10 (which is strictly better than the best Nash equilibrium payoff, and strictly better

than the Stackelberg payoff of each player). Observe first that c ∈ BR (ψ∗i (c)) = BR (w), which

implies that (c, c) ∈ NE (G, (ψ∗1 , ψ∗2)). Next, consider a deviation of player i to biased belief ψ′i.

Observe that player i can gain a payoff higher than 10, only if he plays action d with a positive

probability, but this implies that the unique best-reply of player j to his biased belief about player

i’s strategy is defection, which implies that player i obtains a payoff of at most one.

7.2 Centipede Game

In this section we present a strong biased-belief equilibrium that implements the Pareto optimal

undominated action profile in the centipede game (an asymmetric discrete game with strategic com-

plementarity).

Consider the following normal-form version of the Centipede game (Rosenthal, 1981), in which

each player has 101 actions Ai = {1, 2, ..., 100, 101}, and the payoff function if player 1 chooses action

a1 and player 2 chooses action a2 is:

π1 (a1, a2) =


2 · (a1 − 1) a1 ≤ a2

2 · a2 − 1 a1 > a2

π2 (a1, a2) =


2 · (a1 − 1) a1 ≤ a2

2 · a2 + 2 a1 > a2.

The interpretation of the game is as follows. Each of the players has an “account” with an initial

balance of $0. At each stage, one of the players (in alternating order, starting with player one)

has the right to stop the game. If a player stops the game, each player gets the current amount in



7.2 Centipede Game 23

his account. If a player chooses not to stop the game, then his account is debited by $1 and the

opponent’s account is credited by $3. The game lasts 200 stages, in which player one can stop in the

odd stages and player two can stop in the even stages. Action k < 101 is interpreted as stopping

in the k-th opportunity to stop. Action 101 is interpreted as not stopping at any point. We allow

players to choose mixed strategies, and assume each player to be risk neutral. We identify a mixed

strategy with the vector (α, α2, ..., α101), where each αk ≥ 0 is interpreted as the agent’s probability

of choosing action k (and
∑
i αk = 1).

It is well known, that player 1 chooses to stop in the first round in every Nash equilibrium, and

both players get a payoff of zero. We say that action k is higher than action m if k > m, and we

observe that the centipede game has positive spillovers and has strategic complementarity.

The highest undominated action of player one is a1 = 101 (never stopping), which is a best-reply

against an opponent who never stops. The highest undominated action of player two is a2 = 100

(stopping in the last stage), which is a best-reply against an opponent who never stops. Observe

that (101, 100) is the undominated Pareto-optimal action profile, and that it yields the payoff profile

(199, 202)

We define the biased beliefs ψ∗1 and ψ∗2 as follows:

ψ∗1 (α1, α2..., α99, α100, α101) = (α1, α2, ...α99, 0, α100 + α101) ,

ψ∗2 (α1, α2..., α99, α100, α101) =
(

2
3 · α1,

2
3 · α2, ..., α99,

1
3 + 2

3 · α100,
2
3 · α101

)
.

The first player distorts player 2’s strategy by perceiving an opponent stopping in the last stage as an

opponent who never stops. This implies that never stopping (i.e., a1 = 101) is a best reply of player

1 against player’s 2 perceived strategy in equilibrium. The second player distorts player 1’s strategy

by adding a probability of 1
3 to player 1 stopping in the last round (and normalizing all probabilities

by multiplying them by 2
3 ). This implies that in equilibrium player 2 is indifferent between stopping

in the last round (i.e., a2 = 100) and stopping in the penultimate round (i.e., a2 = 99). This implies

that (1) playing a2 = 100 is a best reply against player 1’s perceived strategy in equilibrium, and (2)

if player 1 deviates and plays action 99 with a positive probability (which is the best reply against the

undistorted equilibrium strategy of player 2, a2 = 100), then a2 = 100 is no longer a best reply against

player 1’s perceived strategy, and as a result player 2 stops earlier, and player 1 is outperformed.

Interestingly, in contrast to the input game discussed in Example 5, to sustain the efficient outcome

in the Centipede game only player 1 can have distorted beliefs that represent wishful thinking. Indeed,
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to support the efficient outcome (101, 100) as a biased-belief equilibrium it is necessary that player

1 assigns sufficiently high probability that player 2 will act generously in his last decision node.

Otherwise, player1’s optimal response would be to stop at some earlier stage. But for player 1’s

optimism to be self-serving it is necessary that player 2 is endowed with pessimism regarding the

behavior of player 1 in his last decision node. If player 2 is not pessimistic, then player 1 would

be better off by possessing less-optimistic beliefs that allow him to to stop with a small positive

probability in his last decision rule (without affecting player 2’s equilibrium behavior), in which case

the efficient outcome cannot be sustained. In contrast when player 2 is pessimistic about player 1’s

decision in his last round, this allows player 2 to incentivize player 1 to sustain player 1’s optimistic

belief and to continue with probability one in his last decision node.

In what follows we formally show that ((ψ∗1 , ψ∗2) , (101, 100)) is a strong biased-belief equili-

brium. Observe first, that ψ∗1 (100) = 101 and ψ∗2 (101) =
(
0, ..., 0, 1

3 ,
2
3
)
, which implies that 101 =

BR1 (ψ∗1 (100)), 100 ∈ BR2 (ψ∗2 (101)), and (101, 100) ∈ NE (G, (ψ∗1 , ψ∗2)). It is clear that player 2

cannot achieve a higher payoff by choosing a different biased belief, because his equilibrium payoff

of 202 is the maximal feasible payoff. Let ψ′1 be an arbitrary biased belief of player 1. Observe that

player 1 can obtain a payoff higher than 199 only if (1) player 2 chooses action 101 with a positive

probability, and (2) player 1 chooses action 100 with a positive probability. However, the biased belief

of player 2, ψ∗2 , implies that if player 1 chooses action 100 with a positive probability, then player

2 never chooses action 101 in any Nash equilibrium of the induced biased game because action 101

yields a strictly lower payoff against player 1’s perceived strategy relative to the payoff of action 100.

7.3 The Traveler’s Dilemma

In this section we present a strong biased-belief equilibrium exhibiting wishful thinking that imple-

ments the undominated Pareto-optimal action profile in the traveler’s dilemma game (which is a

discrete game with strategic complementarity).

Consider the following version of the traveler’s dilemma game (Basu, 1994). Each player has 100

actions: Ai = {1, ..., 100}, and the payoff function of each player is:

πi (ai, aj) =


ai + 2 ai < aj

ai ai = aj

aj − 2 ai > aj

The interpretation of the game is as follows. Two identical suitcases have been lost, each owned
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by one of the players. Each player has to evaluate the value of his own suitcase. Both players get

a payoff equal to the minimal evaluation (as the suitcases are known to have identical values), and,

in addition, if the evaluations differ, then the player who gave the lower (higher) evaluation gets a

bonus (malus) of 2 to his payoff.

It is well known that the unique Nash equilibrium is (1, 1), which yields a low payoff of one

for each player. Observe, that the traveler’s dilemma has positive spillovers, in the sense that it is

always weakly better for a player if his opponent chooses a higher action. The traveler’s dilemma

has strategic complementarity in the sense that the best-reply of an agent is stop one stage before

his opponent, and, thus, an agent has an incentive to choose a higher action if his opponent chooses

a higher action.

Observe that action 99 is the “highest” undominated action of each player (as 99 is a best-reply

against 100, and as action 100 is not a best-reply against any of the opponent’s strategies). In what

follows, we construct a strong biased-belief equilibrium exhibiting wishful thinking that yields the

undominated Pareto-optimal strategy profile (99, 99) with a payoff of 99 to each player.

We define the biased belief ψ∗i as follows:

ψ∗i (α1, α2..., α99, α100) =
(
α1, α2, ...,

α99

2 ,
α99

2 + α100

)
.

In what follows we show ((ψ∗1 , ψ∗2) , (99, 99)) is a strong biased-belief equilibrium. Observe first, that

ψ∗i (99) =
(
0, ..., 0, 1

2 ,
1
2
)
, which implies that 100 ∈ BR (ψ∗i (99)), and, thus, (99, 99) ∈ NE (G, (ψ∗1 , ψ∗2)).

Let ψ′1 an arbitrary perception bias of player i. Observe that player i never plays action 100 in a any

Nash equilibrium of any biased game, because action 100 is not a best reply against any strategy of

player j. Next observe that player i can obtain a payoff higher than 99 only if (1) player j chooses

action 99 with a positive probability, and (2) player 1 chooses action 98 with a probability strictly

higher than his probability of playing action 100. However, the biased belief ψ∗j of player j implies

that if player i chooses action 98 with a probability strictly higher than his probability of playing 100,

then player j never chooses action 99 in any Nash equilibrium of the induced biased game because

action 99 yield player j a strictly lower payoff than action 98 against the perceived strategy of player

i (because according to this perceived strategy, player i plays action 100 with a probability strictly

less than player i’s probability of playing either action 98 or action 99).
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7.4 Auction

We next demonstrate the role of biased-belief equilibria in a typical game of competition. For this we

consider a simple (first-price) auction with complete information. Our example here will demonstrate

that collusive behavior can be sustainable as a biased belief equilibrium.

Consider the following discrete version of a symmetric two-player first-price sealed-bid auction.

The two players compete over a single good that is worth 1 << V ∈ N to each player.7 Each player

i submits a bid ai ∈ {0, 1, 2, ..., V }. The player with the higher bid wins the auction and gets the

object for the price he was biding. The opponents gets a payoff of zero. If both players submit the

same bid, then the winner of the auction is chosen at random. Formally, the payoff function is:

π1 (a1, a2) =


0 a1 < a2

1
2 · (V − a1) a1 = a2

V − a1 a1 > a2.

Observe that the game admits 3 Nash equilibria: (V − 2, V − 2), (V − 1, V − 1) and (V, V ), which

induce a low expected payoff of at most 1 to each player. In what follows we show how to obtain

the Pareto-optimal symmetric strategy profile (0, 0), which yields a payoff of V2 to each player, as the

outcome of a strong belief-biased equilibrium.

We identify a mixed strategy with the vector (α0, α1, ..., αV ), where each αk ≥ 0 is interpreted

as the agent’s probability of choosing action k (and
∑
k αk = 1). Let ψ∗i be defined as follows:

ψ∗i (α0, α1, ..., αV−1, αV ) =
(
0, 0, ...,

∑
i>0 αi, α0

)
. That is, each player distorts the opponent’s stra-

tegy, such that a bid of zero is perceived a bid of V , and any other bid is perceived as a bid of

V − 1.

The equilibrium we construct is based on the following intuition: Each player interprets the

intention to bid zero as a deception coming from a bidder who will ultimately make the highest

possible bid. Under such pessimistic beliefs avoiding making a competitive bid (i.e., bidding zero) is

rational and it leads to collusion at a price of zero. The distorted interpretation is optimal because

a more rational (or more optimistic) interpretation will lead one’s opponent to be more competitive

yielding an inferior outcome for both bidders.

We now formally show that ((ψ∗1 , ψ∗2) , (0, 0)) is a strong belief-biased equilibrium, which yields

each player an expected payoff of V
2 . Observe that 0 ∈ BR (ψ∗i (0)) = BR (V ) , which implies that

7The results that are presented in this example can be extended to a setup in which the two players have different
evaluations for the good Vi 6= Vj .



27

(0, 0) ∈ NE (G, (ψ∗1 , ψ∗2)). Next consider an arbitrary deviation of player i to a biased belief ψ′i.

Let
(
a′i, a

′
j

)
∈ NE

(
G,
(
ψ′i, ψ

∗
j

))
be a strategy profile played in the new biased game following the

deviation of player i. If a′i = 0, then player i wins the auction with a probability of at most 0.5, and,

thus, player i’s payoff is at most V
2 and he does not gain from the deviation. If a′i 6= 0, ψ∗j (a′i) assigns

strictly positive probability to V − 1 and the remaining probability to V , which implies that player

j’s unique best reply to the perceived strategy of player i the action V − 1, which implies that player

i’s payoff is at most 0.5, and therefore he has not gained from the deviation.

8 Discussion

Decision makers’ preferences and beliefs may intermingle. In strategic environments distorted beliefs

can take the form of a self-serving commitment device. Our paper introduces a formal model for

the emergence of such beliefs and proposes an equilibrium concept that support them. Our analysis

characterizes biased-belief equilibria in a variety of strategic environments. It also identifies strategic

environments with equilibria that support belief distortions such as wishful thinking and pessimism.

Our analysis here deals with simultaneous games of complete information, but the idea of strate-

gically distorted beliefs may play an important role also in sequential games and in Bayesian games.

In these frameworks, belief distortion may violate Bayesian updating, and our concept here can po-

tentially offer a theoretical foundation for some of the cognitive biases relating beliefs’ updating. It

can potentially also identify the strategic environments in which these biases are likely to occur. We

view this as an important research agenda that we intend to undertake in the future.

A different research track that might shed more light on strategic belief distortion is experimental.

Laboratory experiments often conduct belief elicitation with the support of incentives for truthful

revelation. A strong evidence for strategic belief bias in experimental games can be obtained by

showing that players assign different beliefs to the behavior of their own counter-part in the game

and to a person playing the same role with someone else. In general our model would predict that

beliefs about a third party’s behavior are more aligned with reality than those involving one’s counter-

part in the game. Laboratory experiments can also test whether specific type of beliefs’ distortions

(such as wishful-thinking) arise in the strategic environments that are predicted by our model.

Finally, we point out that strategic beliefs may play an important role in the design of mechanisms

and contracts. Belief distortions may destroy the desirable equilibrium outcomes that a standard

mechanism aims to achieve. Mechanisms that either induce unbiased beliefs or adjust the rules of the

game to account for possible belief biases are expected to perform better.



28 REFERENCES

References

Babad, E. and Y. Katz, “Wishful thinking – against all odds,” Journal of Applied Social Psychology

21 (1991), 1921–1938.

Babcock, L. and G. Loewenstein, “Explaining Bargaining Impasse: The Role of Self-Serving

Biases,” The Journal of Economic Perspectives 11 (1997), 109–126.

Basu, K., “The traveler’s dilemma: Paradoxes of rationality in game theory,” The American Econo-

mic Review 84 (1994), 391–395.

Battigalli, P., M. Dufwenberg and A. Smith, “Frustration and anger in games,” (2015).

Budescu, D. V. and M. Bruderman, “The relationship between the illusion of control and the

desirability bias,” Journal of Behavioral Decision Making 8 (1995), 109–125.

Bulow, J. I., J. D. Geanakoplos and P. D. Klemperer, “Multimarket oligopoly: Strategic

substitutes and complements,” Journal of Political economy 93 (1985), 488–511.

Cooper, R. and A. John, “Coordinating coordination failures in Keynesian models,” The Quarterly

Journal of Economics 103 (1988), 441–463.

Dekel, E., J. C. Ely and O. Yilankaya, “Evolution of preferences,” Review of Economic Studies

74 (2007), 685–704.

Dobson, K. and R.-L. Franche, “A conceptual and empirical review of the depressive realism

hypothesis.,” Canadian Journal of Behavioural Science/Revue canadienne des sciences du compor-

tement 21 (1989), 419.

Friedman, D. and N. Singh, “Equilibrium vengeance,” Games and Economic Behavior 66 (2009),

813–829.

Guth, W. and M. Yaari, “Explaining reciprocal behavior in simple strategic games: An evolu-

tionary approach,” in U. Witt, ed., Explaining Process and Change: Approaches to Evolutionary

Economics (University of Michigan Press, Ann Arbor, 1992).

Heller, Y. and D. Sturrock, “Commitments and Partnerships,” mimeo, 2017.

Heller, Y. and E. Winter, “Rule rationality,” International Economic Review 57 (2016), 997–

1026.



REFERENCES 29

Herold, F. and C. Kuzmics, “Evolutionary Stability of Discrimination under Observability,” Ga-

mes and Economic Behavior 67 (2009), 542–551.

Inoue, Y., Y. Tonooka, K. Yamada and S. Kanba, “Deficiency of theory of mind in patients

with remitted mood disorder,” Journal of affective disorders 82 (2004), 403–409.

Lord, C. G., L. Ross and M. R. Lepper, “Biased assimilation and attitude polarization: The

effects of prior theories on subsequently considered evidence.,” Journal of personality and social

psychology 37 (1979), 2098.

Mayraz, G., “Wishful Thinking,” Technical Report, The University of Melbourne, 2013.

Milgrom, P. and J. Roberts, “Rationalizability, learning, and equilibrium in games with strategic

complementarities,” Econometrica: Journal of the Econometric Society (1990), 1255–1277.

Rosenthal, R. W., “Games of perfect information, predatory pricing and the chain-store paradox,”

Journal of Economic theory 25 (1981), 92–100.

Ross, L. and C. Anderson, “Shortcomings in Attribution Processes: On the Origins and Mainte-

nance of Erroneous Social Judgments,” in D. Kahiwmamm, P. Slovic and A. Tversky, eds., Judge-

ment Under Uncertainty: Heuristics and Biases (Cambridge University Press, 1982).

Weibull, J., Evolutionary Game Theory (MIT Press, Cambridge, MA, 1997).

Winter, E., I. Garcia-Jurado and L. Mendez-Naya, “Mental equilibrium and rational emoti-

ons,” management science (forthcoming).


	Introduction
	Summary of Main Results

	Model 
	Underlying game
	Biased-Belief Function
	Biased-Belief Equilibrium

	Biased-Belief Equilibrium Outcomes and Nash Equilibria
	Nash Equilibria and Distorted Beliefs
	Any Nash equilibrium is a BBE outcome

	Characterization of BBE Outcomes
	Necessary Conditions for Being a BBE Outcome in all Games
	Zero-Sum Games, Dominant Strategies and Doubly Symmetric GamesY: Internal comment: I have tried the current location for these results, as your comment to the previous revision suggested they shouldn't be in Section 3, but later in the paper.
	Games with Two Pure Actions
	Games with a Continuum Set of Actions

	Wishful thinking and Strategic Complementarity
	Games with Strategic Complementarity
	Wishful Thinking and Monotonicity 
	Results

	BBE and Undominated Stackelberg Strategies
	Additional Examples of Belief Biased Equilibria 
	Prisoner's Dilemma with an Additional ``Withdrawal'' Action
	Centipede Game
	The Traveler's Dilemma
	Auction

	Discussion

