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Abstract  

In certain judgmental situations where a “correct” decision is presumed to exist, 

optimal decision making requires evaluation of the decision-maker's capabilities and 

the selection of the appropriate aggregation rule. The major and so far unresolved 

difficulty is the former necessity. This paper presents the optimal aggregation rule that 

simultaneously satisfies these two interdependent necessary requirements. In our 

setting, some record of the voters' past decisions is available, but the correct decisions 

are not known. We observe that any arbitrary evaluation of the decision-maker's 

capabilities as probabilities yields some optimal aggregation rule that, in turn, yields a 

maximum-likelihood estimation of decisional skills. Thus, a skill-evaluation 

equilibrium can be defined as an evaluation of decisional skills that yields itself as a 

maximum-likelihood estimation of decisional skills. We show that such equilibrium 

exists and offer a procedure for finding one. The obtained equilibrium is locally 

optimal and is shown empirically to generally be globally optimal in terms of the 

correctness of the resulting collective decisions. Interestingly, under minimally 

competent (almost symmetric) skill distributions that allow unskilled decision makers, 

the optimal rule considerably outperforms the common simple majority rule (SMR). 

Furthermore, a sufficient record of past decisions ensures that the collective 

probability of making a correct decision converges to 1, as opposed to accuracy of 

about 0.7 under SMR. Our proposed optimal voting procedure relaxes the fundamental 

(and sometimes unrealistic) assumptions in Condorcet celebrated theorem and its 

extensions, such as sufficiently high decision-making quality, skill homogeneity or 

existence of a sufficiently large group of decision makers.  
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1. Introduction 

In Condorcet’s (1785) paradigm of voting, some "correct" collective decision is 

presumed to exist, and some information regarding voters' skills at making that 

decision is assumed to be known. In this context, each individual voter is typically 

assigned a probability that represents his ability of making a correct decision (see, for 

example, Young (1988), (1995), (1996)). Given such probability assignments, we can 

compute the probability that some judgment aggregation rule (such as a majority rule) 

will actually yield the correct decision. In fact, given such probability assignments, 

the optimal aggregation rule can be identified (Nitzan and Paroush (1982), Shapley 

and Grofman (1984),  Ben-Yashar and Nitzan (1997)).  

Unfortunately, however, we generally do not have a firm foundation for 

estimating a voter’s probability of making a correct decision. Even if a historical 

record of voters’ individual decisions is available, we generally lack a definition of 

ground truth regarding the decided issues against which each voter’s record could be 

compared. Some empirical attempts have thus been made to estimate voters' skills in 

medical and legal contexts, by comparing voter decisions to some exogenous proxy of 

the 'truth' (see, for example, Chapter 10 in Nitzan and Paroush (1985) and Karotkin 

(1994)). Such estimates of individual skills are, however, typically not sufficiently 

reliable for the purpose of determining an optimal aggregation rule. 

 A slightly more sophisticated estimation method has been proposed by 

Grofman and Feld (1983), an application of which to EU council voting has been 

considered by Nurmi (2002). They suggest to estimate a voter's decisional capability 

by the extent that his observed past decisions align with those of the majority. In other 

words, in this method the majority decision is considered as a plausible endogenous 

proxy for the 'truth'. This method is very interesting in that it anticipates the idea that 
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voters' decisional skills can be somehow estimated using the track record of their 

decisions, even in the absence of knowledge of ground truth regarding those 

decisions.  

In this paper, we show how this method can be generalized and optimized. To 

understand the sub-optimality of their method, notice that it can lead to internal 

inconsistency. A simplistic application of the method presumes the correctness of an 

outcome determined by simple majority rule (SMR) and assigns weights to voters 

accordingly. In turn, these assigned weights lead to a different outcome than has 

already been presumed, which might lead to different assigned weights. In this sense, 

the estimation procedure is usually inconsistent or 'unstable'; re-application of the 

estimation procedure yields different outcomes and, in turn, different estimation of 

voters' decisional skills.  

This study considers the setting in which we have a track record of voters’ 

individual decisions, but no given ground truth for the issues on which they voted. 

There are many real-world examples of repeated votes, in which competency varies 

among voters but remains invariant per voter, for which this framework is applicable. 

First, there are periodically repeated committee decisions regarding, for example, 

whether to change interest rates. Similar examples can be taken from the capital 

markets, court votes, medical expert decisions, firm theory (repeated decisions 

concerning quantity and prices), and more. Second, there are cases in which 

committee members are asked to vote on a range of similar but independent 

propositions. This has become quite common on the Internet, where site visitors are 

asked to offer judgments regarding repetitive tasks such as image tagging, expert 

identification and a variety of other tasks (hundreds of examples of which can be 

found, for example, at Amazon’s Mechanical Turk site). 
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We provide an algorithm for finding consistent or “stable” evaluation of 

voters' skills – what we call skill-evaluation equilibrium – that ensures the assignment 

of optimal weights to the voters. Such consistency guarantees therefore the 

simultaneous fulfillment of the two necessary requirements an optimal skill-based 

aggregation rule should satisfy: estimating skills and aggregating accordingly.  More 

specifically, we propose an iterative mechanism that allows skill evaluation based on 

repeated re-evaluation of the optimal voting outcomes. Any new such set of voting 

outcomes yields a new skill evaluation; it turns out that the simultaneous evaluation of 

skills and optimal outcomes converges, thus yielding internally consistent, stable 

skill-evaluation equilibrium, in which neither the outcomes nor the evaluated skills 

need to be changed. This unique property implies the attainment of optimal collective 

decision making as well as consistent, maximum-likelihood skill estimation.  

The optimal weights assigned to the voters could, in principle, be equal, but 

they generally will not be. In the unlikely situation that they turn out to be equal, the 

applied rule is just the common SMR. By definition, the proposed optimal and 

consistent skill-based procedure outperforms any aggregation rule and, in particular, 

SMR, for any given number of voters, decision-making record and distribution of 

skills. In exhaustive experiments using simulated data, we demonstrate that the 

optimal procedure is substantially superior to SMR, under almost symmetric (uniform 

or normal), minimally competent skill distribution that allows unskilled decision 

makers. In fact, given sufficiently large voting records, the collective probability of 

making a correct choice converges to 1, even under conditions in which SMR achieves 

a correct decision with probability of about 0.7. 

It is instructive to compare this result with that of Condorcet (1785). The main 

concern of Condorcet focused on the implications of 'equality' among voters for 
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determining the socially most desirable aggregation rule, where voter equality is 

understood both in terms of assignment of equal voting rights and in terms of 

assignment of equal decisional skills. This main concern resulted in the celebrated 

Condorcet jury theorem (CJT) (Black (1958)). The theorem has two parts. The first 

part establishes the superiority of SMR over individual decision-making (the 'expert 

rule'), provided that voter skills are sufficiently competent and homogeneous, 

Condorcet (1785), Nitzan and Paroush (1982, 1985). (This result was subsequently 

extended to the case where there is uncertainty regarding individual decisional skills 

(Ben Yashar and Paroush (2000), Berend and Sapir (2005), Nitzan and Paroush 

(1985).) The second part establishes that SMR converges to a probability of 1 of 

making the correct decision as the number of voters grows, provided that the voters 

are sufficiently competent, individually or on average (Condorcet (1785), Grofman, 

Owen and Feld (1983), Owen, Grofman and Feld (1986), Berend and Paroush (1998), 

Paroush (1998)). Condorcet and his more recent followers do not take advantage of 

skill heterogeneity among the group members or of the track record of their decisions. 

In contrast, the optimality of our proposed aggregation rule is obtained by exploiting 

the diversity among group members that emerges from the track record of their 

decisions. Our work goes beyond Condorcet in the sense that we show how to obtain 

optimal decision-making without restrictive assumptions such as sufficiently high 

decision-making quality, skill homogeneity or existence of a sufficiently large group 

of decision makers. Instead, we assume only that a sufficient track record for voters' 

decisions is available, which can be exploited to optimally estimate their decisional 

skills and, in turn, optimally assign their decision-making weights, even in the 

absence of any knowledge of ground truth. We do in fact make one very weak 

assumption regarding voters’ skills, namely, that a unanimous decision is correct with 
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probability greater than 0.5. This is a far weaker assumption regarding voters’ skills 

than required for CJT. 

Voter equality as implicit in SMR is justified in situations where decisional 

skills are all of sufficient quality and homogeneity. In this case, a sufficiently large 

number of voters results in convergence to the maximal collective performance. In 

contrast, optimal decision-making that is based on our proposed voting procedure is 

always warranted, deriving its superiority from its ability to identify skills through 

learning from experience. The merit of this procedure and its advantage over SMR are 

especially high when skills are sufficiently spread out and the track record of 

individual decisions is sufficiently abundant. 

The next section describes our setting, presents the proposed judgment 

aggregation rule and results establishing that this skill-based rule is consistent and 

optimal. In the following three sections, we use simulated data to demonstrate the 

superiority of our approach over SMR and one other baseline method, relating the 

results to a variety of parameters: the number of decision makers (whom, for 

convenience, we call voters), the number of issues with respect to which decisions 

have been made and the form of the distribution of individual decisional skills. 

Further implications, possible applications and possible extensions of the results are 

discussed in the concluding Section 6. 

 

2. An Algorithm for Optimal Judgment Aggregation 

In this section we present our algorithm. The discussion here follows that of our 

companion paper (Baharad et al 2009), which deals with the algorithm’s convergence 

properties.  
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Let N={1,…,n}, n ≥ 3, denote a finite set of voters and let M denote a set of m 

distinct binary issues, m ≥ 2. The judgment of voter i∈N over issue j∈M, is denoted 

by jia . Unlike preferences, judgments are binary; thus, }1,0{∈jia . a  denotes the 

entire set of judgments }{ ija . The rows and columns of the matrix are associated, 

respectively, with voters and issues. Hence, a column ja  in the matrix a is the 

judgments profile on issue j ; similarly, a row ai is the judgment profile of voter i. We 

assume that the issues are independent of each other (so that the problem of 

inconsistent aggregation across issues (List and Petit 2002) does not arise here) and 

that each issue has some (unknown) "correct" resolution, denoted by jt . In addition, 

each voter i is associated with an unknown probability ip  of making the correct 

decision. This somewhat simplified assumption assigns a probability to a voter, and 

not to the combination of voter-issue. It supports an implicit assumption, according to 

which a voter can be referred to as having some fixed reliability level in a field (that is 

a set of issues under a common topic), and not only on a specific issue. The set of 

individual probabilities }{ ip is denoted by θ . For simplicity, we assume that, in the 

absence of any information, the two possible resolutions of an issue are equally likely; 

that is, for every j, the prior probability p(tj = 1) = ½. 

A judgment aggregation rule V is a mapping from the set of individual 

judgments a = {aij} to a set of binary decisions in {0,1}
m
. Our objective is to find an 

optimal judgment aggregation rule, given no information other than the set of 

judgments a = {aij}.  

The suggested framework does not assume that the individual skills, {pi}, and 

the correct resolution for each issue are (ex-ante) known; hence, one might wonder in 

what sense a decision method could be optimal. In principle, given }{ ip=θ  and {p(tj 
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= 1)}, we could compute the conditional probability of obtaining the set of judgments 

a. Thus, given some set of judgments a, optimality is obtained by the values of θ  and 

{p(tj = 1)} that maximize the probability of a. As shown below, the values {p(tj = 1)} 

can be determined from a and θ . Thus, denoting by );( θap  the probability of a 

given the parameters θ , our objective is to maximize );( θap . The suggested 

iterative approach for finding this maximum is based on some initial estimate of ip . 

These values are re-used to compute, for each issue j, the probability that 1=jt . 

Moreover, once all the conditional resolution probabilities )|1( atp j =  are given, one 

is able to compute, for each decision maker i , the most likely value of ip . This 

(temporarily) most likely value of ip  is referred to as ′

ip  and }{' '

ip=θ  is said to be 

induced from })|1({ atp j = . The iterative procedure is incomplete so long as θθ ′≠ , 

i.e. ′≠ ii pp  for at least one decision maker. The procedure is complete when θθ ′= , 

i.e. for all i , ′

ip = ip ; at this stage a skill-evaluation equilibrium is obtained. 

To summarize, we have the following hill-climbing procedure, Q , for finding a 

skill-evaluation equilibrium: 

1) Choose some initial θ .  

2) Using the current θ , compute )|1( atp j =  for each mj ,...,1= . 

3) Replace θ  with the induced 'θ . 

4) Repeat until convergence. 

 

It remains only to show how )|1( atp j =  is obtained given }{ ip=θ , and how 

the maximum-likelihood values of }{ ip=θ  are computed, given )}|1({ atp j = . 
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First, to compute )|1( atp j = , recall that the prior probability p(tj = 1) = ½. 

Thus, Bayes' rule implies that ==== )|1()|1( jjj atpatp  

( | 1) ( 1) ( | 1)
(1)

( | 1) ( 1) ( | 0) ( 0) ( | 1) ( | 0)

j j j j j

j j j j j j j j j j

p a t p t p a t

p a t p t p a t p t p a t p a t

= ⋅ = =
=

= ⋅ = + = ⋅ = = + =
 

where ja  is the judgment profile on issue j . This can easily be computed by 

substituting  

01

( | 1) ( | 1) (1 ) (2)
ijij

j j ij j i i

ai a

p a t p a t p p
==

= = = = −∏∏ ∏  

and  

10

( | 0) ( | 0) (1 )
ijij

j j ij j i i

ai a

p a t p a t p p
==

= = = = −∏∏ ∏  

Given the values )}|1({ atp j = , they can be compared to the judgments of 

individual i , in order to compute the maximum-likelihood values of }{ ′=′ ipθ . 

Specifically, the maximum likelihood value of pi is equal to the average (over j) 

probability that aij = tj. Thus,  

|))|1(|1(
1

))|0()|1((
1

01

'

ijj

ja

j

a

ji aatp
m

atpatp
m

p
ijij

−=−==+== ∑∑∑
==

                                                                                                                           

The procedure Q is a special case of the well-known EM algorithm (Dempster 

et al. 1977). Thus, it can be shown (Baharad et al (2010)) that this procedure 

converges to a skill-evaluation equilibrium, and almost always converges to a local 

maximum.  

In the following sections, we will show empirically that, for properly chosen 

initial values, the local maximum to which Q converges is usually a global maximum. 

It should be noted, however, that there are skill-evaluation equilibria that are not local 

maxima. For example, the probability set 5.0=ip , for all i, is an equilibrium that is 
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not a local maximum. Such problematic sets are rare and should not to be chosen as 

initial values.  

Note that we do make a minimal assumption regarding voters' competency, in 

the sense that if voters are unanimous on some issue, then their vote is correct with 

probability greater than ½. More formally, we assume that ∏ ∏ −>
i i

ii pp 1 .  

The procedure converges for θ  as well as for )}|1({ atp j = . While the 

procedure does not technically entail a final aggregation rule, one naturally follows 

from the procedure. For an aggregation rule V, let Vj(a) ∈ {0,1} be the decision of V 

for issue j, and let Vj(a) = 1 if and only if the obtained )|1( atp j = > 0.5. It is now 

shown that this aggregation rule satisfies an optimality condition that is well known in 

the voting literature. 

An aggregation rule V is linear, if there exist weights wi and constant c such 

that, for every j, V(aj) = 1 if and only if  caw
n

i

iji ≥∑
=1

. By the main result in Nitzan 

and Paroush (1982) and Shapley and Grofman (1984), if voter skills { }ip  are known, 

a linear aggregation rule is optimal, that is, yields the maximal collective probability 

of making the correct decision, if wi = log(pi/1-pi).  

It should be noted that the judgment aggregation rule V implied by procedure 

Q is an optimal linear aggregation rule. From equations (1) and (2) above, it follows 

that  

)|1( atp j = > 0.5 ⇔  ∏∏
==

−
01

)1(
ijij a

ii

a

pp > ∏∏
==

−
10

)1(
ijij a

ii

a

pp ⇔  1)
1

(
)12(
>

−

−

∏ ij

i

i

i

a

p

p
 

⇔  0)
1

log()12( >
−

⋅−∑
i

i

i

ij
p

p
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−
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⋅
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i

i

i

i
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1
log(

2

1
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1
log(  
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The last inequality is precisely the one required by the definition of optimality for 

linear aggregation rules. 

It should be noted that although the estimation of decisional skills is based on 

complete information regarding the judgments of all n individuals on all m issues, our 

method is applicable even when voter records are incomplete, that is, when some 

voter’s decision on some issues are not available. All steps in the algorithm can be 

carried out using partial information. Thus, in particular, the method can be applied in 

cases where voters are allowed to abstain.  

We add one note on strategic voting in this context. Our setting assumes a 

common interest among voters to arrive at the truth. Such common interest would 

hopefully reduce a voter’s temptation to vote strategically in order to maximize his 

own weight. The voters' best interest is, after all, to assign the correct weights to every 

voter, in order to reach the correct decision. The question of strategic voting, when 

voters are solely concerned by the common collective interest, was recently examined 

by Ben-Yashar and Milchtaich (2007). They established that under the 'first best' 

voting rule, the decision makers do not have an incentive to vote strategically and 

non-informatively. Fortunately, our setting proposes a mechanism that results in the 

use of the 'first best' voting rule and is therefore immune to strategic non-informative 

voting. Such strategy-proofness does not hold under 'second best' anonymous 

aggregation rules, as have been demonstrated by Austen-Smith and Banks (1996), 

Ben-Yashar and Milchtaich (2007), Feddersen and Pesendorfer (1998) and McLennan 

(1998). In fact, in this setting, effective deliberation prior to the vote is expected to 

take place, as established in Coughlan (2000). That is, every member of the group has 

an incentive to truthfully reveal his private information and then all group members 

unanimously vote for the collectively best alternative.  



 12

 

3. Simulation Design 

As we noted above, for appropriate initialization, the Q procedure converges to a 

locally maximal skill-evaluation equilibrium and it implies a linear aggregation rule 

that is optimal for that skill evaluation. In this section, we outline our simulation 

method and in the following two sections, we will show that this equilibrium typically 

yields a global maximum of the probability function );( θap , as borne out by a range 

of empirical experiments. 

To test the effectiveness of the proposed method relative to some baseline 

methods, we apply simulated scenarios. In each simulation, for each j , the "correct" 

value jt  associated with issue j is randomly sampled using a fair coin mechanism. 

The voters' skills parameters {pi} are sampled according to some distribution, as will 

be specified in context.  

For every voter i  and issue j  we generate the vote jij ta =  if 1=ijk  and 

jij ta −= 1  if 0=ijk , where ijk  is the result of a coin toss with a probability ip  for a 

"1" result. The object of our algorithms is to find jt , given the values ija . Our first 

baseline is SMR the application of which does not require the estimation of the voters' 

decisional skills. A more sophisticated baseline is a weighted majority rule where the 

optimal weight of voter i is obtained by estimating ip  as the proportion of issues for 

which ija  coincides with the majority vote. Formally, let jx̂  denote the majority of 

votes over ),...,( 1 njj aa , for j = 1,...,m. Then the estimated ip  is |}ˆ|{|ˆ 1
jijmi xajp ==  

for i = 1,...,n. We refer to this latter method, which is proposed in Grofman and Feld 

(1983), as GF. Finally, we use the procedure Q, with ip  initialized as in the second 

baseline. (Other initializations are possible; for example, every voter could be initially 
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assigned some fixed 
2
1>ip . The results for such alternative initializations are not 

substantially different than those reported below.) When the decisional skills 

estimated by the procedure Q imply convergence to a value of )|1( atp j = greater 

than ½, the collective decision is assumed to be tj = 1. In this case, the optimal rule is 

the weighted majority rule corresponding to the decisional skills estimated by the 

procedure Q. For the sake of completeness, we also present the results for the optimal 

rule where the actual values of {pi} are known. This represents the upper bound on 

the accuracy that can be achieved on the basis of approximated values of {pi}.  

The methods can be evaluated by comparing the true value of tj to the value 

provided by each algorithm; for a given matrix a, we measure the proportion of 

correct tj values determined by each algorithm. Below, we compare the algorithms on 

a single example for illustrative purposes. In the following two sections, we consider 

systematically generated simulations under varying assumptions regarding voter 

competence. In each case, we will see that Q significantly outperforms both GF and 

SMR.  

For clarity, let’s consider a simple example. Suppose that there are five voters 

whose true decisional skills are given by 0.92 0.20,  0.92, 0.54, 0.46,=tθ and ten 

issues for each of which the correct result is 1. (This is for expositional simplicity and 

implies no loss of generality.) Using the above-described coin toss method, we 

generate a 105× vote matrix {aij} as shown in Table 1. The likelihood of voters with 

skills tθ  voting precisely as indicated in this matrix is 2
-33.8

.  
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          1   1   1   1   1   1   1   1   1   1           ---------------------------------------- (0.46)   0   0   1   0   1   1   1   1   0   0 (0.54)   1   1   1   0   1   0   1   0   0   1 (0.92)   1   0   1   1   1   1   1   0   1   1 (0.20)   0   0   0   0   1   0   0   0   0   0 (0.92)   1   1   1   1   1   1   1   1   1   1 
 

Table 1. The entries in the 105× matrix {aij} represent the vote of voter i on issue j. The 

uppermost row represents the correct results for the issues and the leftmost column represents 

the voters’ respective skills. 

 

We are given only the matrix {aij} and our challenge is to find the correct 

result for each issue. Note first that SMR yields the outcome vector 

(1,0,1,0,1,1,1,0,0,1), which is correct for only 6 of 10 issues. The GF algorithm 

assigns decisional skills to the voters by comparing their respective votes to the 

majority vote. This yields the respective vector of skills 0.6 0.5, 0.8, 0.8, 0.7,=Iθ . 

Now, computing for j = 1,…,10 the probability that tj = 1, we obtain the vector  

== =

10

1)}|1({ jIjtp θ 0.91 0.39, 0.18, 0.98, 0.78, 0.98, 0.39, 0.98, 0.39, 0.91, . 

Using 0.5 as a cutoff, the GF method yields the identical vector of outcomes as SMR; 

it is thus correct for only 6 of 10 issues. Note that the likelihood of voters with skills 

Iθ  voting precisely as indicated in the matrix {aij} is 2
-39.8

.   

Finally, we apply the Q procedure. The 10

1)}|1({ == jIjtp θ  vector is used to 

update the skills vector and, in turn, the updated vector of decisional skills is used to 

update the probabilities, for j = 1,…,10, that tj = 1. Ultimately, the procedure 

converges to the skill-evaluation equilibrium 0.91 0.18, 0.83, 0.65, 0.45,* =θ , 

which, in turn, yields the vector 
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== =

10

1* )}|1({ jjtp θ 0.99 0.99, 0.81, 0.99, 0.99, 0.94, 0.99, 0.99, 0.95, 0.99, . Thus, the 

Q procedure gives the correct result for all ten issues. Moreover, the likelihood of 

voters with skills *θ  voting precisely as indicated in the matrix {aij} is 2
-32.9

, which is 

actually greater than that of the true skills tθ . 

 

4. Simulation Results: Near-Symmetric Skill Distributions 

In our first set of simulations, voters’ skills are sampled uniformly in the range ]1,0[ , 

subject to the single weak constraint that ∏ ∏ −>
i i

ii pp 1 . This constraint requires 

only that the probability that a unanimous decision is correct is greater than 1/2. 

For the first experiments, the number of issues is fixed and equal to 10 and 

100, respectively, while the number of voters varies from 1 to 1000. Accuracy results 

are tabulated over 10,000 independent trials (every trial represents a new choice of 

{pi} and {tj} and, hence, of a). As can be seen in Figure 1, the results remain almost 

constant for sufficiently large n. In particular, unlike in the standard Condorcet case 

and its extensions, SMR does not converge to accuracy of 1 as the number of voters 

increases. More significantly, for m = 10 and sufficiently large n, GF outperforms 

SMR by approximately 0.12 and the procedure Q outperforms GF by approximately 

0.03. Nevertheless, the limited number of issues prevents fine-grained approximation 

of the true {pi} values and even the Q procedure does not come close to the 

theoretical optimum. When the number of issues is increased to 100, we find that GF 

outperforms SMR by approximately 0.21 and the procedure Q outperforms GF by 

approximately 0.04, quickly reaching accuracy of 0.94. 
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Figure 1a: [ ]1,0~,10 Upm =  

 

Figure 1b: [ ]100, ~ 0,1m p U=  

The next simulation presents the effect of the number of issues, varying this 

number from 1 to 1000. The number of voters is assumed to be constant equal to 5 

(Figure 2a) and 500 (Figure 2b) – representing committees and constituencies, 
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respectively. Since SMR is independent of the number of issues, its performance 

remains constant as m grows. As was already evident in Figures 1a and 1b, for both 

n=5 and n=500, it holds constant at approximately 0.69. By contrast, the accuracy of 

both the GF and Q procedures is positively affected by increasing m, due to the 

increased ability to estimate voters’ skills. Moreover, the greater the number of voters 

the greater the ability of the GF and Q procedures to leverage differential voter skills. 

                            

Figure 2a: [ ]1,0~,5 Upn =  
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Figure 2b: [ ]1,0~,500 Upn =  

 

In each of the above cases, the voters’ skills parameters were sampled 

uniformly in the range [0,1], subject to the unanimity constraint. However, in many 

cases skills are normally distributed. In Figure 3, we show the results for Q, as in 

Figure 2b, comparing sampling of pi from a uniform distribution in [0,1] with 

sampling from a normal distribution (truncated with lower and upper bounds of 0 and 

1, respectively) with mean of ½ and a variety of variances. As might be expected, the 

greater the variance the faster the convergence as m increases, since Q is able to 

exploit the differences in skills to improve prediction. Note that a variance of 0.3 

yields slightly better results than the ones obtained under a uniform distribution. 
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Figure 3: 500=n , p distribution varies as shown 

 

Recall that the key to procedure Q is its ability to find values of θ  that 

maximize the probability function );( θap . To gauge the extent to which Q succeeds 

in maximizing this function, we compare the value of );( θap using the value *θ  

obtained by Q with the value of );( tap θ  using the true value tθ  used to generate a. 

For the arbitrary parameter settings, m = 100 and n = 500, over 10,000 trials, we find 

that );( *θap > );( tap θ  in 99.1% of the trials. This strongly suggests that Q is 

succeeding in finding global maxima in most cases. 

This begs the question of why the accuracy of Q falls short of that obtained 

where the true value of θ  is known. Note that for every assignment of probabilities, 

}{ ip=θ , there is a dual assignment, }1{ ip−=θ , such that );();( θθ apap = . Thus, 

for every ``sensible" solution, θ , there is a counter-intuitive one, θ . Examination of 

the errors made by Q reveals that most of the errors are in trials for which the dual 
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solution of the true (actual) one is found. In these trials, every issue is assigned the 

wrong value. This systematic error occurs because of the weakness of our symmetry-

breaking assumption requiring that∏ ∏ −>
i i

ii pp 1 . When the difference between 

∏
i

ip  and ∏ −
i

ip1  is small, a slight discrepancy in estimating the values of {pi} can 

result in the dual solution being chosen instead of the actual solution.  

The weakness of our assumption can be demonstrated empirically; it can be 

verified that if the pi values are chosen out of a uniform distribution in [0,1] subject 

solely to our assumption, then for every n the mean value of {pi}, ip , satisfies 

n

c
pi ≈− 5.0 , where 2.0≈c . It has been shown, however, by Berend and Paroush 

(1998) that a necessary (and sufficient) condition for Condorcet’s Jury Theorem to 

hold is that  Thus, by that result, Condorcet’s Jury 

Theorem does not hold for a skill distribution such as we consider here, a fact we 

have already noted empirically. It might, therefore, be of interest to consider a 

stronger symmetry-breaking assumption. 

 

5.  Simulation Results: Asymmetric Skill Distributions 

Consider now the case in which the {pi} values are chosen from a uniform 

distribution in [0.1,1] instead of in [0,1], which implies that there are no voters who 

are (almost) always wrong. In this case, the mean value of {pi} will typically be 

approximately 0.55. Figures 4a and 4b show the simulation results for m = 10 and m = 

100, respectively, as n varies. As can be seen, SMR converges to 1 as n grows. This is 

expected by an extension of Condorcet’s Jury Theorem. Note, however, that even in 

this case, SMR is dominated by the Q procedure, which converges to accuracy of 1 
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considerably faster than SMR. 

 

Figure 4a: [ ]1,1.0~,10 Upm =  
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Figure 4b: [ ]1,1.0~,100 Upm =  

 

Finally, we re-examine the results presented in Figures 2a and 2b, by considering the 

uniform distribution in [0.1,1]. As in the case of the uniform distribution in [0,1], 

SMR is unaffected by increasing m. However, the accuracy of the GF and Q 

procedures increases with m, converging quite dramatically to near perfect accuracy 

in the case of n = 500. 

 

Figure 5a: [ ]1,1.0~,5 Upn =  
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Figure 5b: [ ]1,1.0~,500 Upn =  

To sum up, we find that our method is effective even under the most minimal 

assumption regarding voter skills: a unanimous vote must be more likely right than 

wrong. This assumption is considerably weaker than the voter skills assumption made 

by Condorcet and also weaker than the assumptions subsequently shown to be 

necessary and sufficient for the Condorcet Jury Theorem to hold (Berend and Paroush 

1998). Moreover, we have shown that the Q procedure outperforms GF and SMR 

both under sufficient skills assumptions where Condorcet’s Jury theorem holds and 

under our assumptions where it does not hold. 

 

 6. Conclusions 

This paper lies at the confluence of two fields: voting theory and stochastic 

optimization theory. The Q procedure is, as we have noted, an instantiation of the EM 
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algorithm, one of the best-known tools in stochastic optimization theory. The EM 

procedure is notably useful in data clustering, medicine, natural language processing, 

and a variety of other fields. It has been shown that the framework in which EM is 

used – optimizing values where information is missing – is appropriate to the problem 

of collective-decision making. In this case, the values to be optimized are estimations 

of voter skills and the missing information are the true outcomes. In short, EM can be 

profitably applied to the theory of voting and collective decision-making, where it can 

be used to achieve optimal resource utilization through maximum-likelihood 

experience-based estimation of the probabilities reflecting individual decisional skills 

and the assignment of the corresponding appropriate decisional weights. The 

proposed application of the EM procedure fills a significant gap in the literature on 

optimal collective judgment aggregation that was stimulated by Condorcet's (1785) 

approach and his celebrated jury theorem (Black 1958). When there are only some 

lower bounds on voters’ skills that do not differentiate among individual voters, 

Condorcet's Jury theorem deals with the optimal aggregation rule, namely, SMR. 

However, when information regarding the respective probabilities of individual 

voters’ making correct judgments is available, this additional information can be 

exploited through the optimal assignment of weights to individual voters according to 

their skills (Nitzan and Paroush 1982; Shapley and Grofman 1984). We have shown 

that optimization is possible even when the unrealistic assumption that voters’ skills 

are known does not hold. By our main results, when voters' decisions on a 

multiplicity of issues are known, there is no need to know the “correct” decision in 

order to estimate individual voter skills. It is thus possible to overcome the 

informational obstacle in optimal collective decision methods which can be invoked 

without making unrealistic demands for information. This brings the generalization of 
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Condorcet's approach to a “happy end”: the optimal rule is identifiable even under 

common circumstances. 

Note that in Condorcet's setting, the maximum likelihood estimation is applied 

to the likelihood of their single observed set of judgments relative to the two 

(unobserved) states of the world, assuming that voters' decisional skills are equal. 

From these estimated likelihoods, we infer that the most likely state is the one that 

would have produced the observation with the higher probability (Young 1988, 1995). 

The same approach is used in the more general settings of Condorcet's followers, 

making alternative assumptions on the voters' decisional skills. In our more general 

setting, the maximum likelihood estimation is applied given the observed judgments 

of the voters on m issues. The estimation consists of two stages. In the first stage, the 

unobserved voters' decisional skills are estimated and in the second stage, the 

likelihood of their single, m
th

 observed set of judgments is estimated in the two 

(unobserved) states of the world, assuming that voters' probabilities to make the 

correct decision are those obtained in the first stage. From these estimated likelihoods 

we infer that the most likely state is the one that would have produced the m
th

 

observation with the higher probability. 

The situation in which voter decisions on multiple issues are available is a 

common one both in the context of voting and in the context of expert judgments. 

Although the natural setting for our approach is 

the one in which voting is "a collective quest for truth" (Young 

1995), we can also apply our algorithm to cases in which voting is "a 

compromise between conflicting values" (Young 1995), that is, where we 

wish to reach consensus among voters whose individual preferences are 

expressed by approving or rejecting each of a multiplicity of 
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proposals or candidates. Thus, for example, every instance in which voters are asked 

to simultaneously approve or reject each of a multiplicity of proposals or candidates 

is amenable to the analysis presented here and to the application of the proposed 

optimal aggregation method based on the Q procedure. This is the balloting method 

used in approval voting (Brams and Fishburn 1978, 2005), in which the object is to 

determine some set of winners when voters' dichotomous preferences are defined on 

the set of alternative candidates. Thus, like Brams et al. (2007), we are, in effect, 

proposing an alternative aggregation function for the approval voting balloting 

method. In this context, however, the fact that 

voters are assigned different weights, and that some might even be 

assigned negative weights, plainly runs into political, institutional, 

structural, psychological and cultural difficulties.  

 

Similarly, this method can be used in voting bodies, such as parliaments, 

where open voting takes place on a regular basis. Moreover, the use of the Internet for 

assembling positive or negative user judgments on products has become 

commonplace. The Q procedure can be used to optimally aggregate these individual 

judgments into an optimal overall judgment. More broadly, the method is applicable 

wherever ongoing decisions are required in uncertain dichotomous choice settings, in 

legal, medical, economic, political (Miller 1996) and other contexts. 
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