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ABSTRACT. Negative results on the the existence of Bayesian equilibria when
state spaces have the cardinality of the continuum have been attained in recent
years. This has led to the natural question: are there conditions that characterise
when Bayesian games over continuum state spaces have measurable Bayesian
equilibria? We answer this in the affirmative. Assuming that each type has finite
or countable support, Bayesian equilibria may fail to exist if and only if the un-
derlying common knowledge σ-algebra is non-separable. Furthermore, anoma-
lous examples with continuum state spaces have been presented in the litera-
ture in which common priors exist over entire state spaces but not over common
knowledge components. There are also spaces over which players can have no
disagreement, but when restricting attention to common knowledge components
disagreements can exist. We show that when the common knowledge σ-algebra
is separable all these anomalies disappear.

1. INTRODUCTION

What if we lived in a world in which Bayesian games were not guaranteed al-
ways to have Bayesian equilibria?

The effects might be felt widely throughout the literature, as it is difficult to
exaggerate the importance which the concept of Bayesian games has attained in
a wide range of subfields in economics and game theory, with subjects such as
incomplete and asymmetric information models, signalling theory, principal-agent
models, adverse selection and the provisions of public goods forming only a very
partial list. Many papers in these fields start off by assuming the existence of an
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equilibrium and continuing their analyses from there. It would be challenging to
gain significant theoretical traction, for example, in Bayesian truthful implemen-
tation and the related concepts of the revelation principle, the revenue equivalence
theorem and optimal Bayesian methods, without first assuming that at least one
Bayesian equilibrium exists in particular models being studied.

This isn’t usually a concern at all, of course, since Harsányi (1967) proved
(along with introducing the very concept of a Bayesian game) that every finite
Bayesian game has an equilibrium. This positive result can easily be extended to
Bayesian games over countably many states; e.g., Simon (2003).

Over a continuous state space, however, negative results have been shown in
recent years. Simon (2003) presented an example of a three-player Bayesian game
over a continuum state space with no Bayesian equilibrium.1 Any hopes that posi-
tive results could be restored by considering approximate equilibria instead of exact
equilibria were dashed when Hellman (2012b) showed an example of a two-player
Bayesian game over a continuum state space with no Bayesian ε-equilibrium for
ε0 small enough.

These negative results are perturbing. One on occasion hears it said that it is
sufficient to concentrate on finite games alone because the world itself is finite.
However, as pointed out in Cotter (1991), since there are an infinity of continu-
ous random variables, a more accurate statement would be that decision makers
observe only a finite number of variables, each to a finite degree of accuracy. To
model this as a finite space, however, requires that the modeller know a priori the
set of variables actually observed and the degree of accuracy of each observed vari-
able. Given this, the use of infinite games reflects the modeller’s ignorance of the
decision-making environment, just as infinite horizon models are routinely used to
reflect ignorance of the life-span of the decision maker.

Furthermore, limiting attention to finite Bayesian games is far from being suffi-
cient for capturing the full range of possible models that need to be studied. Many
models in the literaure make use of continuous variables. Examples include mod-
els in which prices (as in models of auctions or bargaining, such as that of Chat-
terjee and Samuelson (1983) for example) are the main state variables, or in which
the main variables are profits and outputs in market models (for example Radner
(1980)), continuous time points, accumulated wealth, accumulated resources, pop-
ulation percentages, share percentages and so forth.

Furthermore, an extensively-used approach to dealing with a Bayesian game
with a finite but large number of states is to analyse instead a similar game with a

1 By the existence of an equilibrium we mean the existence of a measurable equilibrium. There are
several reasons for restricting attention to measurable strategies (and hence measurable equilibria); to
consider just two reasons, if a strategy is not measurable it cannot be constructed explicitly, and the
payoffs of non-measurable strategies haven’t got well-defined expected values. Measurability has in
fact been included as a basic requirement in the definition of an equilibrium over uncountable spaces
since the earliest literature on the subject (see Schmeidler (1973) for one such example). Throughout
this paper we will therefore often use the term ‘existence of an equilibrium’ as synonymous with
‘existence of a measurable equilibrium’ without further qualification.
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continuum of states. Myerson (1997), for example, informs readers of Chapter 2
of his textbook on game theory, when referring to Bayesian games, that ‘it is often
easier to analyze examples with infinite type sets than those with large finite type
sets’.

Given the negative results mentioned earlier, however, modellers working with
continuum state spaces face the perhaps uncomfortable situation in which they may
need to check, in each separate model with which they are working, whether or not
an equilibrium exists. This motivates our main result here, which is exhibiting
conditions that guarantee the existence of Bayesian equilibria in Bayesian games
over a continuum of states, restoring the confidence in the existence of equilibria
in the class of games satisfying these conditions.

In most of the paper we assume that in the Bayesian games under consideration
every atom of each player’s posterior contains only a finite number of elements.2

Note that every known example of a Bayesian game with no Bayesian equilibria
satisfies this property, hence characterising conditions for the existence of equilib-
ria in games with this property is of importance. Making this assumption is also
concordant with some intuitions that although decision makers may a priori con-
sider in their minds a continuum of possible states, for the purposes of observing
a definite signal and moving to their posterior probabilities in most realistic cases
they can only distinguish a finite number of posterior states to which they assign
positive probability.

Part (I) of Theorem 2 then shows that if a Bayesian game satisfies the condition
that the common knowledge σ-algebra of the underlying knowledge space is sep-
arable then there exists a Bayesian equilibrium. Furthermore, this condition is not
only sufficient, it is also necessary in the following sense, as shown in part (II) of
Theorem 2: if Ω is a standard Borel space and F is a sub-σ-algebra of the Borel
σ-algebra that is not separable and in which each atom is countable (and which can
be generated by some beliefs), then there exists a Bayesian game Γ with state space
Ω, a common prior, and common knowledge σ-algebra F that does not possess an
ε-MBE for small enough ε > 0.

The condition of separability of the common knowledge σ-algebra also turns
out to be the crucial factor in resolving a series of disturbing ‘paradoxes’ in models
over continuum state spaces. These are detailed in Section 3: there are Bayesian
games over continuum state spaces that have no Bayesian equilibria, yet if these
games are restricted to being played over any common knowledge component of
the players, Bayesian equilibria do exist; there are type spaces with common priors
such that when restricting to any common knowledge component the resulting type
space has no common prior; there are type spaces that exclude any possibility
of disagreement between the players, but again when restricting to any common
knowledge component the resulting type space does admit disagreements.

These sorts of paradoxes are disturbing because they introduce instability in
moving between the ex ante stage and the interim stage of analyses. Depending

2 This condition can be weakened to countably many elements; see Section 10.
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on the stage, one can get different answers to the questions of whether or not there
exist equilibria, common priors or disagreements. As shown in this paper, however,
all of these paradoxes disappear if the underlying knowledge spaces satisfy the
condition of separability of the common knowledge σ-algebra.

Finally, we note that our results are attained mainly using results from descrip-
tive set theory. In fact, we have found that there are parallels between concepts
used in game theory and descriptive set theory concepts that are surprisingly useful
for arriving at conclusions in game theoretic models. At several points in the body
of the paper we strive to make these parallels explicit. Hopefully, these sorts of
parallels can be deepened in future research, leading to more new results.

2. PRELIMINARIES AND THE MODEL

2.1. A Few Preliminaries.
A standard Borel space is a topological space that is homeomorphic to a Borel

subset of a Polish space.3 Whenever we refer to a σ-algebra on a standard Borel
space, we mean a sub σ-algebra of the Borel σ-algebra.

For a standard Borel space X , let ∆(X) denote the space of regular Borel prob-
ability distributions on X , with the topology of weak convergence of probability
measures, and let ∆f (X) ⊆ ∆(X) (resp. ∆a(X) ⊆ ∆(X)) denote the subspace
of finitely supported (resp. purely atomic) measures. ∆f (X),∆a(X) are Borel
subsets4 of ∆(X).

If (Ω,B) is a measurable space and F is a sub-σ-algebra of B, then - Blackwell
and Ryll-Nardzewski (1963) - a proper regular conditional distribution (henceforth,
proper RCD) given F, is a mapping t : Ω×B→ [0, 1] such that:

µ(B) =

∫
Ω
t(x)(B)dµ(x), for all B ∈ B

and
t(ω)(A) = 1, if ω ∈ A ∈ F

Note that in particular,

t(ω)(T ) = Eµ[1T | F](ω), µ-a.e. ω ∈ Ω

In terms that may be more familiar for game theorists, a proper RCD t of a proba-
bility measure µ may be thought of as the posterior t of a prior µ with respect to a
knowledge structure F.

3 Equivalently, a measurable space (X,B) is standard Borel if there exists a metric on X that
makes it a complete separable metric space in such a way that B is then the Borel sigma-algebra, i.e.,
the smallest σ-algebra containing the open sets.

4 ∆f (X) can be viewed as ∪n∈N∆n(X), where ∆n(X) consists of the probability measures
supported on at most n points. ∆n(X) can be viewed as the image in ∆(X) of Xn × ∆n, where
∆n is the n-simplex, under a finite-to-one map. Similarly, ∆a(X) can be viewed as the image of
{X ∈ XN | ∀n 6= m,xn 6= xm} × {x ∈ RN | x ≥ 0,

∑∞
n=1 xn = 1} under a countable-to-one

map.



BAYESIAN GAMES WITH A CONTINUUM OF STATES (R&R DRAFT) 5

A very central concept in this paper is:

Definition 1. A σ-algebra F on a Borel space Ω is separable5 if there is a count-
able6 collection of Borel subsets {Bn}n∈N of Ω that generates F; that is, F is the
smallest σ-algebra such that {Bn}n∈N ⊆ F.

2.2. Knowledge Spaces.
A knowledge space for a nonempty, finite set of players P is given by a triple

(Ω,P, (Fp)p∈P), where Ω is a standard Borel space of states, and Fp for each p ∈ P

is a σ-algebra over Ω, called p’s knowledge σ-algebra. Intuitively, the elements in
Fp represent the events that player p can identify, hence the name knowledge σ-
algebra.

Let F := ∩p∈PFp; that is, F is the finest σ-algebra contained in all the play-
ers’ knowledge σ-algebras. F is called the common knowledge σ-algebra of the
knowledge space. The elements of F intuitively represent the events of which all
the players can have common knowledge.

2.3. Type Spaces.
Fix a knowledge space (Ω,P, (Fp)p∈P). For each p ∈ P, a type function tp is

mapping tp : Ω→ ∆(Ω) which is Fp-measurable, satisfying tp(ω)(A) = 1 when-
ever ω ∈ A ∈ Fp. A triple (Ω,P, (tp)p∈P) (with (Fp)p∈P understood implicitly,
Fp is the σ-algebra generated7 by tp) is called a type space.

ASSUMPTION: Unless otherwise specified we will assume that tp(ω)(·) ∈
∆f (Ω),8 for all p ∈ P and all ω ∈ Ω. This assumption will only be relaxed in
Section 10 and for one example in Section 3.2.

ASSUMPTION: Unless otherwise specified, we will henceforth assume9 that
type spaces satisfy positivity, i.e., that tp(ω)[ω] > 0 for all p ∈ P and ω ∈ Ω.

Type spaces that do not satisfy this condition are non-positive. We will offer
justification in Proposition 8 as to why we restrict attention to positive type spaces.
We note here that from the assumption that tp(ω)(·) is a measure with finite support
for all p ∈ P and all ω ∈ Ω, and that tp is positive, it follows that each atom10 of
each player’s knowledge σ-algebra Fp, and hence also of the common knowledge
σ-algebra F, is countable. The atom of the common knowledge σ-algebra F con-
taining ω is called the common knowledge component containing ω, and is denoted
K(ω).

5’Separable’ is synonymous with ’countably generated’.
6 In this paper, ‘countable’ refers both to finite cardinalities and to countably infinite cardinalities.
7The σ-algebra generated by a mapping f : X → Y between standard Borel spaces is {f−1(B) |

B ⊆ Y is Borel}.
8 Recall that ∆f (Ω) is the set of finitely supported measures over Ω.
9 This assumption also appears in Samet (1998).
10An atom of a σ-algebra is an element of it which is non-empty and is not strictly contained in

any other element.
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A measure µp ∈ ∆(X) such that tp is a proper RCD for µp given Fp is a prior
for tp. A common prior is a measure µ that is a prior for the type functions of all
the players p ∈ P.

Most game theory models11 work with a special case of type spaces that are
partitionally generated. In such models, each player p has a partition Πp of Ω. (In
our case, Πp is the collection of atoms of Fp.) That player’s knowledge σ-algebra
Fp is the σ-algebra generated by Πp.12 A type function tp is then defined by a
Borel mapping tp : Ω× F → R such that

(a) for each ω ∈ Ω, tp(ω)(·) ∈ ∆(Ω),
(b) if ω′ ∈ Πp(ω) then tp(ω′)(·) = tp(ω)(·).

Intuitively, a type function tp represents the probability distribution that player p
ascribes to the states conditional on receiving a signal that ω is a possible true state.

2.4. Bayesian Games & Bayesian Equilibrium.
A Bayesian game Γ = (Ω,P, (tp)p∈P, (I

p)p∈P, (r
p)p∈P) consists of the follow-

ing components:

• (Ω,P, (tp)p∈P) forms a type space.
• Ip is a finite action set for each Player p ∈ P.
• r : Ω×

∏
p∈P I

p → RP is a bounded measurable payoff function.

As usual, we extend r multi-linearly to r : Ω×
∏
p∈P ∆(Ip)→ RP: That is,

r(ω, (xp)p∈P) =
∑

(ip)p∈P∈
∏

p∈P I
p

∏
p∈P

xp[ip]

 r(ω, (ip)p∈P)

A strategy of a player p ∈ P is a mapping Ω→ ∆(Ip) that is Fp-measurable. A
measurable Bayesian ε-equilibrium (ε-MBE), with ε ≥ 0, is a profile of strategies
σ = (σp)p∈P such that for each p ∈ P, each atom A of Fp, and each x ∈ ∆(Ip),∫

A
rp(ω, σ(ω))dtp(ω) + ε ≥

∫
A
rp(ω, x, σ−p(ω))dtp(ω)

When ε = 0 we will refer simply to an MBE instead of a 0-MBE.

3. THREE PARADOXES & EXAMPLES

The main motivation for the results of this paper is exhibiting conditions only on
the common knowledge structure equivalent to the existence of Bayesian equilib-
ria in games over continuum many states. As further motivation, in this section we
present ‘three paradoxes’ related to games and type spaces over continuum many

11 This can be broadened to: nearly all models in the economics, game theory and decision theory
literature.

12By the σ-algebra generated by Πp, we mean the collection of Borel sets which contain all those
elements of Πp that they intersect.



BAYESIAN GAMES WITH A CONTINUUM OF STATES (R&R DRAFT) 7

states, and several more examples for contrast. The results in this paper charac-
terise when these paradoxes may hold and when they are guaranteed not to exist.

3.1. Paradoxes. The first two paradoxes, on Bayesian games and common priors
in spaces over continuum many states, have been well-known in the literature for
about a decade. The third paradox, on no betting, is fairly new new.

The “Now You See It, Now You Don’t” Bayesian Equilibrium.
Simon (2003) and Hellman (2012b) present examples of Bayesian games that

have no Bayesian equilibria. In greater detail, let Γ be one of these Bayesian
games, with state space Ω. Then there exists no vector of measurable strategies
(ϕ1, . . . , ϕn), one per player, that forms a Bayesian equilibrium.

However, in both cases, one can choose any ω ∈ Ω and consider the common
knowledge component ofK(ω), the atom of F containing ω. (as determined by the
partitions of the players). Let Γ|K(ω) be the Bayesian game derived by restricting13

Γ to the states in K(ω). Then there is a Bayesian equilibrium of Γ|K(ω), since this
component is countable.

The “Now You See It, Now You Don’t” Common Prior.
This paradox was first noted in Simon (2000). We present here a slight variation

of a version appearing in Lehrer and Samet (2011).
Consider the following type space over a state space Ω, as depicted in Figure 3.1.

Ω is constructed out of four disjoint subsets of R2, labelled Aj for j ∈ {1, 2, 3, 4}:
• A1 = {(x, x+ 1) | −1 ≤ x < 0}
• A2 = {(x, x) | −1 ≤ x < 0}
• A3 = {(x, x− 1) | 0 ≤ x ≤ 1}
• A4 = {(x, ψ(x)) | 0 ≤ x ≤ 1}, where ψ(x) = x − c(mod 1) for a fixed

irrational c in (0, 1).

The knowledge space is partitionally generated, with Π1 and Π2 respectively the
partitions of the two players. Player 1 is informed of the first coordinate of the state
and player 2 is informed of the second coordinate. Thus, each element of Π1(ω) is
composed of the two points on the vertical line that contains the state ω. Similarly,
Π2(ω) contains the two points on the horizontal line that includes the state ω.

The posterior tpω for each of the two points in Πi(ω) is 1
2 . Furthermore, let µ be

the probability measure 1
4

∑4
j=1 ψj , where ψj is the Lebesgue measure over Aj .

Lehrer and Samet (2011) show that measurability conditions are satisfied by the
posteriors and that µ is a common prior for tpω.

However, although the entire space Ω has a well-defined common prior, if we
again concentrate on the common knowledge component K(ω0) of any arbitrary
state ω0 (fixing the posteriors) then there is no common prior14 over K(ω0). The

13If one restricts the type functions and payoffs to a set which is common knowledge - that is, in
the common-knowledge σ-algebra F, then the resulting game is well-defined.

14 There may, however, be a common improper prior over K(ω0). An improper prior allows for
the possibility that the total measure it defines over a space diverges.
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FIGURE 1. The state space consists of the three diagonals A1,
A2, A3 and of A4. The latter is obtained by a rightward shift of
the top-right diagonal by an irrational number c.

reason for this is that K(ω0) is a doubly infinite countable sequence

. . . , ω−(k+1)
, ω−k

, . . . , ω−1 , ω0 , ω1 , . . . , ωk
, ω

k+1
, . . . (3.1)

such that ({ωk, ωk+1}) ⊆ Π1 for all odd k ≥ 1, ({ωk, ωk−1}) ⊆ Π1 for all even
k ≤ 0, ({ωk, ωk+1}) ⊆ Π2 for all odd k ≥ 0, and ({ωk, ωk−1}) ⊆ Π2 for all
even k ≤ −1. Any common prior ν over K(ω0) must satisfy the condition that
ν(ωk) = ν(ωk + 1) for all k. Thus all the countably many states in K(ω0) must
have the same probability, which is impossible.

The “Now You See It, Now You Don’t” Acceptable Bet
For a type space with type spaces (Ω,P, (tp)p∈P) a bet is a list of (fp)p∈P) of

bounded15 random variables fp : Ω → R. An acceptable bet is a bet that satisfies
the condition that

Ep[fp | ω] :=

∫
Ω
fp(s)dt

p(ω)[s] > 0 for all ω ∈ Ω. (3.2)

By summing the integrals and integrating over the entire space, it’s clear that the
existence of a common prior implies that there is no acceptable bet (see at the ar-
gument, e.g., in Hellman (2012a)). Since there is a common prior over the entire
compact space in the example depicted in Figure 3.1, there can be no acceptable

15We assume boundedness to avoid anomalies; see Feinberg (2000).
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bet over the entire space. By a result in Feinberg (2000) (see also Heifetz (2006),
the converse is true if Ω is compact and we allow only continuous bets.
To show how in this example we can construct acceptable bets on each com-
mon knowledge component, once again we concentrate on a particular state ω0

and the common knowledge component K(ω0) containing it. We make use of a
variation of a construction from Hellman (2012a) to define the following function
f : K(ω0)→ R with K(ω0) as in (3.1):

f(ωn) =


1 if n = 0
1 +

∑n
i=1

1
2i

if n > 0 is even, or n < 0 is odd
−(1 +

∑n
i=1

1
2i

) if n > 0 is odd, or n < 0 is even

It is easy to check that f is an acceptable bet over K(ω0), even though there is no
globally acceptable bet over the entire space Ω.

Several researchers have noted that these sorts of paradoxes strike at the heart of
major assumptions underpinning research in contemporary economics and game
theory, namely those related to the distinction between the ex ante stage and the
interim stage of analysis. The full state space, over which priors are defined, is
usually taken to be the ex ante stage while the common knowledge component
represents the interim stage after each player receives a signal.

In many presentations, the Bayesian games and type spaces are considered ‘aux-
iliary constructions’ for the sake of analysis. According to this view, in reality there
is no chance move that selects a player’s type; the knowledge and belief of each
player determines his or her type. Type spaces and Bayesian games are merely
ways to model the incomplete information each player has about the other players’
types. The true situation the players face is the interim stage after the vector of
types has been selected. However, incomplete information requires us to consider
the ex ante stage in order to understand how the players make their choices in the
interim stage. Furthermore, in this view, in dynamic situations in which several
signals may be received in succession over time, with each such signal refining the
information known to the players, what is the interim stage after the receipt of one
signal may also be considered the ex ante stage with respect to subsequent signals
that have not yet been received.

This very standard view is challenged by the paradoxes detailed in this section.
They show that when the state space has the cardinality of the continuum there may
be a disturbing instability as we move from ex ante to interim stages: is there or is
there not a common prior? Is there or is there not a Bayesian equilibrium? Is there
or is there not a possible disagreement?

Taken together, Theorem 1, Theorem 2, and Theorem 3 in this paper show that
all three paradoxes essentially disappear when the underlying common knowledge
σ-algebra is separable; in fact, these solutions lead to full characterisations of when
these pathologies may occur.

3.2. More Examples. EXAMPLE #1: The state space is Ω = R - correspond-
ing to an amount - chosen via some common prior - say, a normal distribution.
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Player 1 is told the absolutely value of the amount ω of the asset - but is not told
whether it is positive or negative amounts, e.g., whether it is amount they are due
or that they owe - while Player 2 is told the absolute value of |ω + 1| - e.g., if the
agent in charge of informing Player 2 what the amount is, in addition to forgetting
to specify whether it is an mount due or owed, always overestimates the amount by
1 unit.

It is easy to verify that the atoms of the common knowledge σ-algebra are of
the form {x + n | n ∈ Z}. Indeed, if τ1 denotes the generator of Player 1’s
uncertainty (τ1(x) = −x) and τ2 denotes the generator of Player 2’s uncertainty
(τ2(x) = 1− x), then τ1 ◦ τ2(x) = x− 1 so T := τ1 ◦ τ2 is the shift. The common
knowledge σ-algebra, in this case, consists of all those Borel sets F which satisfy
x ∈ F → x+ n ∈ F for all n ∈ Z, or equivalently, T (F ) = F .

We claim first that this σ-algebra is separable: As the useful Proposition 3 below
shows, this is equivalent to the existence of a Borel set B ⊆ Ω which intersects
each atom of F in exactly one point. In our case, simply take B = [0, 1).

Theorems 1, 2, and 3 then guarantee us that common priors exist on all compo-
nents, Bayesian equilibria exist regardless of the payoffs, and there are no agree-
able bets on any components. Finding the common priors and Bayesian equilibria,
however, can be quite cumbersome, and hence the advantage of possessing general
existence theorems such as those we present here.

In fact, the last example can be generalised to show that our results apply in
many situations, via Theorem 4, which gives a criterion for separability.

EXAMPLE #2: Now, to the game in the previous example, add a 3rd player.
We will allow ourselves to deviate slightly from the usual framework allow this
player’s belief to be supported on a infinite (but countable) number of points; as
we explain later in Section 10.2, this more general framework can also be handled
by our results. This 3rd player is informed of some amount but he believes that
the actual number may be some integer multiple or divisor of what he is told (for
example, he may not be sure if this is the total amount, or the amount per person in a
group of unknown size after the amount has been divided). Hence, the atoms of his
knowledge are generated by multiplication by a positive integer - and in particular,
the atoms of his knowledge are of the form {. . . , 1

3x,
1
2x, x, 2x, 3x, . . .}. When

combined with the uncertainty of Players 1, 2 - which, as we saw, are generated
by addition and subtraction by an integer - we see that in this common knowledge
σ-algebra G, x, y are in the same atom iff x − y is rational. It is well known that
there cannot exist a set B which intersects each atom in only finitely many points,
e.g., Chapter 2 Rudin (1986).

Hence, this common knowledge structure is not separable, and as a result, com-
mon knowledge components will not possess common priors, Bayesian equilibria
will not exist for certain priors and payoffs, and for certain type structures - even
those induced by a common prior - we will find acceptable bets on components.
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4. RESULTS

4.1. Common Priors over Components. Let τ = (Ω,P, (tp)p∈P) be a type space
with common knowledge σ-algebra F. If K ∈ F then τK := (K,P, (tp|K)p∈P),
consisting of the state space K and the type functions restricted to K, is a well-
defined type space. This is true in particular if K is an atom of F. Furthermore, if
µ is a common prior, then we say that a property holds for almost every common
knowledge component if the set of components for which it does not hold are all
contained in a set of measure zero.

Theorem 1 essentially states that given a type space τ with a common prior,
the type space τK for any common knowledge component K is guaranteed also to
have a common prior if and only if the underlying common knowledge σ-algebra
is separable almost everywhere.

Theorem 1. Let τ be a type space with a common prior µ. The following condi-
tions are equivalent:

(1) There exists X ∈ F with µ(X) = 1 such that F|X is separable.
(2) For almost every common knowledge component K, the type space τK has

a common prior.
(3) There is a proper regular conditional probability t of µ given F such that

for almost every common knowledge component K and each x ∈ K, t(x)
is a common prior for τK .

Remark 2. In particular, it follows that the common knowledge σ-algebra F gener-
ated in Figure 3.1 is not separable. This, however, could be seen by more elemen-
tary means: the restriction of F to any one of the sets A1, A2, A3, A4 is easily seen
to be induced by the equivalence relation induced by an irrational rotational of the
circle - i.e., x→ x−c mod 1, c being irrational – and this σ-algebra is well-known
to be non-separable.

The proof can be found in Section 6

4.2. Bayesian Equilibria. Theorem 2 essentially states that given a type space τ
is guaranteed to have a Bayesian equilibrium if and only if the underlying common
knowledge σ-algebra is separable almost everywhere.

Theorem 2.

I. Let Γ be a Bayesian game in which the common knowledge σ-algebra is
separable. Then there exists an MBE for Γ.

II. Let Ω be a standard Borel space, and let F be sub-σ-algebra of the Borel
σ-algebra that is not separable and which is belief induced. Then there
exists a Bayesian game Γ with state space Ω, a common prior, and common
knowledge σ-algebra F that does not possess an ε-MBE for small enough
ε > 0, and in particular does not possess an MBE.

To prove Theorem 1.I, we proceed in three steps. First, we will develop a
notion of the space of (not necessarily positive) Bayesian games with countably
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many states S, player set P and action sets (Ip)p∈P, which we will denote by
B(S,P, (Ip)p∈P) (or just B for short). Afterwards, we will prove the existence of
a Bayesian equilibrium selection for this class of games. Then we will show how
one can measurably map the games induced on each common knowledge compo-
nent of a general game into the space of games on countably many states S; the
composition of this mapping and the Bayesian equilibrium selection from the sec-
ond step will give us the required global Bayesian equilibrium. We can construct
such a mapping because the separability, it turns out, allows us to measurably enu-
merate the elements of each atom, and once we have this enumeration we can map
the game on each atom to its appropriate game in the space B; when we lack such
an enumerate, this cannot be done because we have no canonical way to select the
mapping. Details are given in Section 7.

4.3. No Betting. Theorem 3 essentially states that given a type space τ , we are
guaranteed that the common knowledge components possess no acceptable bets -
effectively, no acceptable bets at the interim stage - if and only if the underlying
common knowledge σ-algebra is separable almost everywhere.

Theorem 3.

I. Let Γ be a Bayesian game with a common prior in which the common
knowledge σ-algebra is separable. Then for almost every common knowl-
edge component K, there are no acceptable bets on K.

II. Let Ω be a standard Borel space, and let F be sub-σ-algebra of the Borel
σ-algebra that is not separable and which is belief induced. Then there
exists a Bayesian game Γ with state space Ω, a common prior, and com-
mon knowledge σ-algebra F such that on almost every common knowledge
component, there exists an acceptable bet.

The proof of Theorem 3.I is given in Section 6; the proof of Theorem 3.II is
given in Section 8.

4.4. A Condition for Separability.

Theorem 4. Suppose Ω is a standard Borel space with metric d, and F is a sub-
σ-algebra of the Borel σ-algebra, and suppose that for each atom A in F, A is
countable and infx,y∈A d(x, y) > 0. Then F is separable.

In other words, as long as in each atom the elements ’keep their distance’ and
don’t get ’bunched up’, the σ-algebra is separable. The proof appears in Section
5.4.

5. PRELIMINARIES TO PROOFS

5.1. Descriptive Set Theory Preliminaries. A relation E on a standard Borel
space Ω is said to be Borel if it is Borel as a subset of Ω × Ω; i.e., if the set
{(x, y) ∈ Ω | xEy} is Borel. A Borel equivalence relationship is said to be count-
able if each equivalence class is countable.
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If E is a Borel equivalence relationship on a space Ω, then for each ω ∈ Ω,
[ω]E (or just [ω] when it is clear to which relationship we are referring) denotes the
equivalence class of ω.

Given a σ-algebra F, there is an induced equivalence relation, denoted EF, de-
fined by

[ω]EF
:= [ω]F := ∩ω∈A∈FA

Given a Borel equivalence relationship E on Ω and a set T ⊆ Ω, the saturation
[T ]E of T w.r.t. E is [T ]E = ∪ω∈T [ω]E. We will sometimes write [T ]F instead of
[T ]EF

. Conversely, if E is a Borel equivalence relationship, the induced σ-algebra
FE is the collection of saturated Borel sets.

In terms that may be more familiar to game theorists used to working with finite
atomic partitions as bases for σ-algebras, [ω]F is the atom containing ω and for an
event T , [T ]F, is the union of the atoms intersecting T .

If F is a σ-algebra on a standard Borel space such that each atom is countable,
then it follows from the Lusin-Novikov theorem (see, for example, Theorem 18.10
of Kechris (1995) or Proposition 10 ahead) that the induced equivalence relation-
ship EF is Borel and that the saturation of each Borel set is Borel.

A transversal of an equivalence relationship is a set that intersects each equiv-
alence class in exactly one point. A Borel equivalence relationship E is said to be
smooth if there is a Borel mapping ψ : Ω → X , where X is some standard Borel
space, such that ψ(x) = ψ(y)↔ x ∼ y.

Given a standard Borel space Ω and a sub-σ-algebra F of the Borel σ-algebra,
we let Ω/F denote the quotient space whose elements are the equivalence classes
induced by F and the induced σ-algebra consists of precisely the images of the sets
in F under the quotient map.

We will make repeated use of the following proposition:

Proposition 3. The following conditions are equivalent for a countable Borel
equivalence relationship EF induced on Ω by a σ-algebra F:

(a) F is separable.
(b) There is a Borel transversal for EF.
(c) The quotient space Ω/F is standard Borel.
(d) The equivalence relationship EF is smooth.

Proof. The equivalence (b)⇐⇒(c)⇐⇒(d) is stated in Propositions 6.3 and 6.4 of
Kechris and Miller (2004). If (c) holds and Λ is a countable collection of Borel sets
generating the Borel structure on Ω/F, the collection {q−1(U) | U ∈ Λ}, where
q : Ω→ Ω/F is the quotient map, generates F, and hence (a) holds.

Now, suppose (a) holds; let B1, B2, . . . ∈ F generate F. The map p : Ω → 2N

defined coordinate-wise by pn(ω) = 1Bn(ω) is Borel and satisfies p(x) = p(y) iff
xEFy, and hence EF is smooth. �

The following is from Feldman (1977):
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Proposition 4. Let E be a countable Borel equivalence relationship on a standard
Borel space Ω. Then there is a countable group G of Borel bijections Ω→ Ω such
that for each ω ∈ Ω, [ω]E = {g(ω) | g ∈ G}.

5.2. Preliminaries on Knowledge. Let τ be a type space with knowledge σ-
algebras (Fp)p∈P.For each p ∈ P and each set N ⊆ Ω, let Kp(N) denote the
saturation of N w.r.t. Fp, i.e., Kp(N) = [N ]Fp . If ω ∈ Ω, write for short
Kp(ω) = Kp({ω}). Since the saturation of countable Borel sets under a Borel
equivalence relationship is also Borel, we have:

Lemma 5. If N is Borel, then so is Kp(N).

For each finite sequence p̂ = (p1, . . . , pk) ∈ P∗ := ∪n≥0P
n and N ⊆ Ω, let

K p̂(N) = Kpk
(
Kpk−1

(
· · · (Kp1(N)) · · ·

))
and K p̂(ω) = K p̂({ω}). Then, define

K∞(N) = ∩p̂∈P∗K p̂(N)

We will say that a countable Borel equivalence E (or, equivalently, the σ-algebra
it induces) is belief induced if there are finitely many equivalence relationships
E1, . . . ,En refining it (Ek ⊆ E for k = 1, . . . , n) such that each Ek has finite
equivalence classes and E is the finest common coarsening of E1, . . . ,En, i.e., E is
the transitive closure of ∪nk=1Ek. This is equivalent to saying that E is the common
knowledge equivalence relationship induced by some type space (with finitely sup-
ported types). Not all countable Borel equivalence relationships are belief induced;
we elaborate in Appendix A.16

Lemma 6. Let Ω be a standard Borel space, let G be a σ-algebra with countable
atoms, let µ ∈ ∆(Ω) and let t be an RCD for µ given G that satisfies t(ω)[ω] > 0
for all ω ∈ Ω. Let N ⊆ Ω be a µ-measurable set satisfying µ(N) = 0. Then there
is K ∈ G with N ⊆ K and µ(K) = 0.

Proof. For each n ∈ N, define

Nn = {ω ∈ N | t(ω)[ω] ≥ 1

n
}

Let Kn = [Nn]G ∈ G; in other words, Kn = ∪ω∈Nn [ω]. For all ω ∈ Ω, if ω /∈ Kn

then
t(ω)(Kn) = 0,

while if ω ∈ Kn then

t(ω)(Kn) = t(ω)[ω] ≤ n · t(ω)[ω] ≤ n · t(ω)(Nn),

Therefore

µ(Kn) =

∫
Ω
t(ω)(Kn)dµ(ω) ≤ n ·

∫
Ω
t(ω)(Nn)dµ(ω) = n · µ(Nn) = 0

and we can take K = ∪n∈NKn. �

16 We are grateful to Benjamin Weiss for pointing this out to us.
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Corollary 7. Let τ be a positive type space with a common prior µ. Let N ⊆ Ω
be a µ-measurable set satisfying µ(N) = 0. Then there is K ∈ F, the common-
knowledge σ-algebra, with N ⊆ K and µ(K) = 0.

To prove Corollary 7, one applies Lemma 6 inductively to show that for each
n ∈ N and each p̂ ∈ Pn,K p̂(N) is Borel. Corollary 7 will often be used implicitly;
in many proofs, when useful, we will automatically assume that some null set we
are discarding is common knowledge – or, equivalently, and more to the point, that
its complement is common knowledge.

Finally, we justify our concentration on positive type spaces. Proposition 8 es-
sentially states that if a space has a common prior (whether or not positive) then
under that prior the event containing the states to which any player p assigns zero
probability in the posterior is a null event:

Proposition 8. Let τ be a type space (not necessarily positive) with a common
prior µ. Denote, for each p ∈ P,

Np := {ω ∈ Ω | tp(ω)[ω] = 0}
Then µ(Np) = 0 for all p ∈ P.

Proof. Recall that each type function is Fp-measurable. Let x ∈ Np and ω ∈ Ω.
If ω is not in the same atom of x then tp(x)[ω] = 0 since ω is not in the support of
tp(x). Otherwise, since tp(x)[x] = 0 and tp(x)[ω] = tp(x)[x], we again conclude
that tp(x)[ω] = 0. The proposition follows from the definition of an RCD. �

We will also need:

Proposition 9. Let F1, . . . ,Fp be knowledge σ-algebras with finite atoms on a
standard Borel space Ω, and let µ ∈ ∆(Ω). Let ε > 0. Then there exists a positive
type space τ with common prior ν with these knowledge structures F1, . . . ,Fp,
and such that ||ν − µ|| ≤ ε, the distance being the total variation norm.

The proof appears in Appendix A.

5.3. Some More Descriptive Set Theory Theorems. The following variants are
slight strengthening of the Lusin-Novikov theorem (see, for example, Theorem
18.10 of Kechris (1995)):

Proposition 10. Given a σ-algebra F that induces a countable Borel equivalence
relationship on a standard Borel space Ω, there exist:
I. Partial17 Borel mappings g1, g2, . . ., from Ω/F to Ω such that for all q ∈ Ω/F,
q = ∪q∈dom(gn){gn(q)}, gn(q) 6= gm(q) whenever n 6= m and ω ∈ dom(gn) ∩
dom(gm), and if q /∈ dom(gk), then q /∈ dom(gn) for all n > k.
II. Partial Borel mappings f1, f2, . . ., from Ω to Ω such that for all ω ∈ Ω, [ω]F =
∪ω∈dom(fn){fn(ω)}, fn(ω) 6= fm(ω) whenever n 6= m and ω ∈ textdom(fn) ∩

17 A mapping from a certain domain is called partial if it is defined only on a subset of the domain;
it follows that the domain, as in the inverse image of the entire range space, is Borel.



BAYESIAN GAMES WITH A CONTINUUM OF STATES (R&R DRAFT) 16

dom(fm), and if ω /∈ dom(gk), then q /∈ dom(gn) for all n > k.

The second part follows from the first by taking fn(·) = gn([·]F), since the
mapping Ω → Ω/F assigning each element to it’s equivalence class is easily seen
to be Borel when F is smooth.

If (Ω,E), (Λ,D) are standard Borel spaces with Borel equivalence relations
E and D induced on them, (Ω,E) is said to embeddable into (Λ,D) if there is
an injective Borel mapping ψ : Ω → Λ such that for all ω, η ∈ Ω, ωEη ⇐⇒
ψ(ω)Dψ(η); in this case, we denote (Ω,E) @ (Λ,D).

A countable Borel equivalence relationship is said to be hyperfinite (Dougherty
et al. (1994)) if it is induced by the action of a Borel Z-action on Ω; i.e., if there
is a bijective18 Borel mapping T : Ω→ Ω such that xEy ⇐⇒ ∃n ∈ Z, Tn(x) = y.

Proposition 11. Let E1, E2 be non-smooth countable Borel equivalence relation-
ships on standard Borel spaces Ω1,Ω2, with E1 being hyperfinite. Then (Ω1,E1) @
(Ω2,E2).

Proof. Let Et be the tail equivalence relationship on C = 2N; i.e., if S : C → C is
defined by (Sx)n = xn+1, then xEty iff ∃k,m ∈ N such that Sk(x) = Sm(y); Et
is non-smooth and hyperfinite, see (Dougherty et al., 1994, Sec. 6). By the Glimm-
Effros dichotomy for countable Borel equivalence relationships, Harrington et al.
(1990), since E2 is not smooth,19 (C,Et) @ (Ω2,E2); denote such an embedding
by θ. By Theorem 7.1 of Dougherty et al. (1994), any two non-smooth hyperfinite
equivalence relationships can be embedded into each other, and (C,Et) is known
to be hyperfinite (Dougherty et al., 1994, Ch.6), hence (Ω1,E1) @ (C,Et); denote
such an embedding ϕ. This yields ψ = ϕ ◦ θ as the required embedding. �

5.4. Proof of Theorem 4. Let (Vn)n∈N be a countable basis for Ω, and let G be a
countable group which induces the equivalence relationship E = EF induced by the
σ-algebra F as in Proposition 4. For each n ∈ N, define fn : N→ {0, 1, 2, . . . ,∞}
by

fn(ω) = |{Vn ∩ [ω]F}|
We will show that fn is Borel: Fix some well-ordered > on G, and define

ψg(ω) = 1g(Vn)(ω)
∏
g′<g

(1− 1g−1(·)=g′−1(·)(ω))

where 1A is the indicator function of A; that is, ψg(ω) indicates whether g−1(ω) ∈
Vn and, in addition, that this point has not appeared before for previous elements
of G acting on ω. Hence, fn =

∑
g∈G ψg. So each n ∈ N, fn is Borel and

18 If a Borel mapping between standard Borel spaces is injective, a theorem by Kuratowski states
that its image is standard Borel and that its inverse is Borel.

19 The Glimm-Effros dichotomy is usually stated for a state space Ω that is Polish; however, a
Borel space can always be endowed with a Polish topology inducing the same Borel structure, since
all standard Borel spaces are Borel isomorphic.
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our assumption of infx,y∈A d(x, y) > 0 for each atom A of F is easily seen to
imply that for each ω, En(ω) = {n | fn(ω) = 1} is non-empty, and the function
m(·) = minEn(·) is measurable. Hence, the correspondence

Ψ(ω) = {g(ω) | g ∈ G} ∩ Vm(ω) = ∪g∈G({g(ω) ∩ Vm(ω))

has a Borel graph and, by the definition of m(·), satisfies |Ψ(ω)| = 1 for all ω;
hence, Ψ is a measurable function. Furthermore, Ψ is constant on each atom, and
therefore F is smooth.

6. PROOFS OF THEOREM 1 AND THEOREM 3.I

Lemma 12. The mapping ∆(Ω) × Ω → R given by (ν, ω) → ν({ω}) is Borel.20

(REFERENCE NEEDED.)

Lemma 13. The correspondence

Ψ(ω) = {ν ∈ ∆a(Ω) | ν(K(ω)) = 1 and ν|K(ω) is a common prior for τK(ω)}

has a Borel graph, and |Ψ(ω)| ≤ 1 for all ω ∈ Ω; hence, Ψ is a partial function.

Proof. The fact that |Ψ(ω)| ≤ 1 (i.e., that on a countable space in which no proper
non-empty subset is common knowledge there exists at most one common prior)
follows from Proposition 3 of Hellman and Samet (2011).

Let (fn)n∈N be as in Proposition 10. Define for each n ∈ N, gn : ∆a(Ω)×Ω→
[0, 1] by:

gn(ν, ω) =

{
ν({fn(ω)}) if ω ∈ Dom(fn)
0 if ω /∈ Dom(fn)

and for each m,n ∈ N and p ∈ P, define

Dn,m = ∆a(Ω)× (dom(fn) ∩ dom(fm))

and

Hp
n,m = {ω ∈ Dn,m | tp(fn(ω))[fm(ω)] · ν(Kp(fm(ω))) = ν({fm(ω)})}

Each Dn,m and Hn,m is Borel - to see this, note that the mapping ω → tp(ω) is
Borel, and

ν(Kp(fn(ω))) =
∑

m s.t. fm(ω)∈Kp(fn(ω))

ν({fm(ω)})

Finally,

Ψ(ω) = {ν ∈ ∆a(Ω) |
( ∞∑
n=1

gn(ν, ω) ∈ {0, 1}
)

∧p∈P ∧n,m∈N
(
(ν, ω) /∈ Dn,m ∨ (ν, ω) ∈ Hp

n,m

)
}

�

20Recall that ∆(Ω) is endowed with the topology of narrow convergence of probability measures.
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Proof. (of Theorem 1.) Clearly, property (3) implies property (2). Suppose (2)
holds; then, for Ψ as in Lemma 13, Ψ(ω) = 1 for µ-a.e. ω ∈ Ω. Hence, after
restricting Ψ to some X ∈ F of full µ-measure, the graph of Ψ defines a Borel
function ψ : X → ∆a(Ω), which clearly satisfies K(x) = K(y) ⇐⇒ ψ(x) =
ψ(y); hence F|X is smooth.

Finally, assume property (1) holds, and assume w.l.o.g., Ω = X . By21 Theorem
1 of Blackwell and Ryll-Nardzewski (1963), there is a µ-a.e. proper RCD t for µ
given F. The claim that t is a common prior on µ-a.e. component follows now
from Proposition 14 below. �

Proof. (Proof of Theorem 3.I) By Theorem 1, almost every common knowledge
component K has a common prior. This is sufficient, by Theorem 1.a. in Hellman
(2012a), to conclude that there can be no acceptable bet over τK . �

Proposition 14. Let E,E′ be smooth countable Borel equivalence relationships on
a standard Borel space Ω, with E′ refining E (that is, E′ ⊆ E) let µ be a regular
Borel probability measure on Ω, and let t, t′ be proper RCD’s of µ w.r.t. the σ-
algebras F,F′ induced by E,E′, respectively. Then for µ-a.e. ω ∈ Ω and E′-
equivalence class C ′ with ω ∈ C ′,

t(ω)(· | C ′) = t′(ω)(·) (6.1)

Proof. It suffices to show that for µ-a.e. ω ∈ Ω and each E′-equivalence class C ′

such that ω ∈ C ′,
t(ω)({ω} | C ′) = t′(ω)[ω]

Indeed, this suffices since both t, t′ are constant in each E′-equivalence class, and
both sides of (6.1) vanish for sets supported outside of C ′. Since ω ∈ C ′, this is
equivalent to showing that for µ-a.e. ω ∈ Ω and such C ′,

t′(ω)[ω] · t(ω)(C ′) = t(ω)[ω] (6.2)

Note that since E,E′ are smooth, the induced quotient spaces Ω/F,Ω/F′ are stan-
dard Borel by Proposition 3 and µ induces measures on these quotient spaces.
Throughout this proof, it will be convenient to view t, t′ as functions on Ω/F,Ω/F′.
- i.e., to view the RCD’s as a function of the equivalence class, not of its elements.

Lemma 15. For any bounded real-valued random variable X on (Ω, µ),∫
Ω
X(ω)dµ(ω) =

∫
Ω/F

(∑
ω∈C

X(ω) · t(C)[ω]

)
dµ(C) (6.3)

Proof. It suffices to verify (6.3) in the case X = 1A, A being Borel, and then to
use an approximation argument. In this case, the left-hand side of Equation (6.3)

21 The condition given there for the existence of proper RCD’s is easily seen to follow from the
existence of a Borel transversal, which – by Proposition 3 – follows from separability.
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is just µ(A), while the other side is∫
Ω/F

(∑
ω∈C

1A(ω) · t(C)[ω]

)
dµ(C) =

∫
Ω/F

t(C)(A ∩ C)dµ(C)

=

∫
Ω/F

t(C)(A)dµ(C)

In general, for an F-measurable function f : Ω→ R – which induces a measurable
function f : Ω/F → R – we have∫

Ω/F
f(C)dµ(C) =

∫
Ω
f(ω)dµ(ω)

(again, one checks it first for simple F-measurable functions) and in particular for
f(·) = t(·)(A). Hence,∫

Ω/F
t(C)(A)dµ(C) =

∫
Ω
t(ω)(A)dµ(ω) = µ(A)

as required. �

Now, note that on Ω/F′ there is the equivalence relationship E∗ induced by E;
that is, two elements of Ω/F′ are E∗ equivalent if they are subsets of the same
equivalence class of E. E∗ is easily seen to be Borel and smooth as well; denote its
induced σ-algebra on Ω/F′ as F∗. Let t∗ denote the proper RCD of µ (as a measure
on Ω/F) w.r.t F∗, which exists by22 Theorem 1 of Blackwell and Ryll-Nardzewski
(1963).

Lemma 16. For µ-a.e. C ∈ Ω/F and each E′-equivalence class C ′ ⊆ C,

t∗(C)[C ′] = t(C)(C ′)

Proof. For any bounded real-valued random variable X on (Ω/F′, µ) (by abuse of
notation, we let X also denote the induced F′-measurable random variable defined
on Ω), by repeated use of Lemma 15,∫

Ω/F

(∑
ω∈C

X(ω) · t(C)[ω]

)
dµ(C) =

∫
Ω
X(ω)dµ(ω) =

∫
Ω/F′

X(C ′)dµ(C ′)

=

∫
Ω/F

(∑
C′∈C

X(C ′) · t∗(C)[C ′]

)
dµ(C)

where the sum over C ′ ∈ C is taken over E′-equivalence classes. (The middle
equality follows by definition for indicator functions.) However, for µ-a.e. ω ∈ Ω,∑

ω∈C
X(ω) · t(C)[ω] =

∑
C′∈C

X(C ′) · t(C)(C ′)

22 See explanation and footnote when this result is used in the proof of Theorem 1.
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Hence,∫
Ω/F

(∑
C′∈C

X(C ′) · t(C)(C ′)

)
dµ(C) =

∫
Ω/F

(∑
C′∈C

X(C ′) · t∗(C)[C ′]

)
dµ(C)

and this holds for any bounded real-valued random variable X . �

We now complete the proof. For any bounded real-valued random variable X
on Ω, by Lemma 15 (applied first to the equivalence relationship E′ on Ω, and then
to the equivalence relationship E∗ on Ω/F′), and by Lemma 16,∫

Ω
X(ω)dµ(ω) =

∫
Ω/F′

(∑
ω∈C′

X(ω) · t′(C ′)[ω]

)
dµ(C ′)

=

∫
Ω/F

(∑
ω∈C′

X(ω) · t′(C ′)[ω]

) ∑
C′⊆C

t∗(C)[C ′]dµ(C)

=

∫
Ω/F

∑
C′⊆C

∑
ω∈C′

X(ω) · t(C)(C ′) · t′(C ′)[ω]

 dµ(C)

=

∫
Ω/F

(∑
ω∈C

X(ω) · t(C)([ω]E′) · t′([ω]E′)[ω]

)
dµ(C)

Comparing this to Equation (6.3), we see that for µ-a.e. ω ∈ Ω,

t([ω]E)([ω]E′) · t′([ω]E′)[ω] = t([ω]E)[ω]

or, denoting C ′ = [ω]E′ and recalling t([ω]E) = t(ω), and similarly for E′, t′, we
deduce Equation (6.2). �

7. PROOF OF THEOREM 2

Fix a countable set S and an element s0 ∈ S. Let B denote the collection of all
P-tuples (sp, gp)p∈P for which (S,P, (Ip)p∈P, (s

p, gp)p∈P) constitutes a Bayesian
game, where (sp) being the types, (gp) being the payoffs. B is endowed with the
topology of point-wise convergence23: (spα, g

p
α)p∈P = Υα → Υ = (sp, gp)p∈P

in B if for every player p ∈ P, every ω ∈ S, and every pure action profile a ∈∏
p∈P I

p in gpα(ω, a)→ gp(ω, a) and spα(ω)→ sp(ω):

Proposition 17. B is homeomorphic to a Borel subset Ξ :=
(
(S × [0, 1])∗ ×

R
∏

p∈P I
p)S×P and hence is standard Borel (where for a setA, A∗ = ∪∞n=0A

n with
each An being both closed and open).

The simple intuition is that for each player and state pair (ω, p) ∈ S × P, we
need to specify both an element in (S× [0, 1])∗ – a finite list of states that are in the
same element of the knowledge partition as ω, and the probabilities themselves to

23 We define the topology in terms of nets.
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these states – as well as an element of R
∏

p∈P I
p

, which specifies what payoff that
player will receive as a result of each possible action profile.

Although we will not need it, the proof shows this mapping can be chosen to be
natural up to a choice of a well-ordering on S. Henceforth, we will identify B with
some such fixed subset of Ξ.

Proof. Write B =
∏
p∈P(Bp

s ×Bp
g), where Bp

s (resp. Bp
g) denotes the projection

of B to the space of types (resp. payoffs) for Player p, with the induced topologies.
It’s enough to show that Bp

s is homeomorphic to a Borel subset of
(
(S× [0, 1])∗

)S
and that Bp

g is homeomorphic to Borel subseteq of RS×
∏

p∈P I
p

.
The latter claim is trivial once one notices that for any countable set C, the set

of bounded functions in RC is Borel, as it can be written

∪n∈N ∩c∈C {a ∈ RC | |ac| ≤ n}.
and that the Tychonoff topology is indeed the required topology of point-wise con-
vergence. We turn to the former claim. Fix some well-ordering < on S. As
mentioned above, the intuition describing the map from Bp

s to
(
(S × [0, 1])∗

)S is
the following: for each ω ∈ S, the player has to specify the finite list of states he
believes he could be in and the weight each one receives. Finite lists of states are
ordered by >. Hence, the image of Bp

s under such a map is given by the subset of
Ξ defined by three conditions: Being supported on finite sets, they have total mass
of unity, and they are constant on the set they are supported on. Mathematically:

∩ω∈S ∪F⊆S, |F |<∞ ∩x/∈F {sp ∈
(
(S × [0, 1])∗

)S | sp(ω)(x) = 0}⋂
∩ω∈S{sp ∈

(
(S × [0, 1])∗

)S |∑
x∈S

sp(ω)[x] = 1}⋂
∩ω,η,ζ∈S{sp ∈

(
(S × [0, 1])∗

)S | sp(ω)[η] > 0→ sp(ω)(ζ) = sp(η)[ζ]}

and, again the topology is the topology of point-wise convergence. �

The space Σp of strategies for Player p on a countable space is clearly a compact
subspace of (∆(Ip))S , hence the space of strategy profiles Σ =

∏
p∈P Σp is a

compact space.

Proposition 18. The Bayesian equilibrium correspondence BE : B → Σ has a
Borel graph and takes on compact non-empty values.

Proof. The fact that every Bayesian game with a countable state space has at least
one Bayesian equilibrium follows from standard fixed point arguments; see, e.g.,
Simon (2003). The fact that the set of Bayesian equilibrium is compact also follows
by standard arguments. To show that the graph G of the BE correspondence is
Borel, note that

G = {((sp, gp)p∈P, σ) ∈ B× Σ | ∀ω ∈ S, ∀p ∈ P, ∀x ∈ ∆Q(Ip),∑
v∈S

1v∈Kp(ω) · gp(v, σ(w))sp(ω)[v] ≥
∑
v∈S

1v∈Kp(ω) · gp(v, x, σ−p(w))sp(ω)[v]}
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where for a finite set A, ∆Q(A) denotes the probability distributions on a A which
give rational weights to all points. �

The following corollary then results from Proposition 18 and the selection theo-
rem of Kuratowski and Ryll-Nardzewski (1965) (see also Himmelberg (1975)):

Corollary 19. There exists a Borel mapping ψ : B→ Σ such that for all Λ ∈ B,
ψ(Λ) is a Bayesian equilibrium of Λ.

Given two Bayesian games

(S,P, (Ip)p∈P, (s
p
S)p∈P, (g

p
S)p∈P)

and
(T,P, (Ip)p∈P, (s

p
T )p∈P, (g

p
T )p∈P)

with countable state spaces and the same player and action sets, an isomorphism
from S to T is a bijective mapping φ : S → T such that:

• For all ω ∈ S and pure action profile x, gS(ω, x) = gT (φ(ω), x).
• For all ω, η ∈ S and p ∈ P, spS(ω)[η] = spT (φ(ω))[φ(η)].

Proposition 20. Let Γ = (Ω,P, (Ip)p∈P, (t
p
S)p∈P, (r

p
S)p∈P) be a Bayesian game

such that the common knowledge σ-algebra F is separable and aperiodic,24 and let
B = B(S,P, (Ip)p∈P) be the set of Bayesian games with countable state space S
with the same player and action space as Γ. Then Ω/E is standard Borel and there
is a Borel map Φ : Ω→ S which is F-measurable and a Borel map Λ : Ω/F → B
such that for each ω ∈ Ω, if we denote

Γω = (K(ω),P, (Ip)p∈P, (t
p|K(ω))p∈P, (r

p|K(ω))p∈P)

then Θ|K(ω) is an isomorphism of Γω to Λ(K(ω)).

Proof. Let ζ1, ζ2, . . . be an enumeration of S, and let g1, g2, . . . be as in Proposition
10 w.r.t. F. Define Φ : Ω→ S by Φ(ω) = ζn(ω), where n(ω) is the unique n such
that gn(K(ω)) = ω. We can then define Λ(q) = (gpq , s

p
q)p∈P by

gpq (Φ(ω), x) = rp(ω, x)

and
spq(Φ(ω))[Φ(η)] = tp(ω)[η]

It is straightforward to check that Φ and Λ so defined satisfy the requirements. �

Proof. (of Theorem 2.I) For simplicity, take the case that the common knowledge
equivalence relationship is aperiodic. Otherwise, partition the space into the com-
mon knowledge components of each size, and on each use a modified version of
Proposition 20 with S being of a fixed countable or finite size.

24 An equivalence relationship is aperiodic if each equivalence class is infinite. So we will say
that a σ-algebra is aperiodic if each atom is infinite.
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Let ψ : B→ (
∏
p∈P ∆(Ip)) be a Bayesian equilibrium selection as in Corollary

19. Let Φ,Λ be as in Proposition 20 for some countable set S. For each ω ∈ Ω,
define

σ(ω) = ψ(Λ(K(ω)))(Φ(ω))

Such σ is then an MBE. �

Proof. (of Theorem 2.II) Let C = 2N denote the Cantor space and let Et be the
tail equivalence relationship; i.e., if S : C → C is defined by (Sx)n = xn+1, then
by xEty iff ∃k,m ≥ 0, Sk(x) = Sm(x). This is a countable Borel equivalence
relationship which is non-smooth and hyperfinite, see (Dougherty et al., 1994, Sec.
6). Now, let X = {−1, 1}×C, and define SX : X → X by SX(x0, x1, x2, . . .) =
(−x0, S(x1, x2, . . .)). Let EX be the equivalence relationship on X given by

EX = {(x, y) | ∃k,m ≥ 0, SkX(x) = SmX (y)}

This relationship is hyperfinite as the product of hyperfinite relationships (see
Proposition 5.2 of Dougherty et al. (1994)) and hence by Proposition 11, (X,E) @
(C,Et); let ψ denote such an embedding.

Let ΓX = (X, {1, 2}, {L,R}×{L,R}, t1X , t2X , r1
X , r

2
X) be the two-player game

presented in Hellman (2012b) with state space X as above which does not possess
an ε-MBE for small enough ε; the common knowledge equivalence relationship of
that game is indeed EX . The type space in that game is deduced from a common
prior µX , and it also easy to see there that there is δ > 0 such that if ν is a
different common prior, but satisfies ||ν − µX || ≤ δ (in total-variation distance),
then the game with the induced type space also does not possess a ε-MBE for ε
small enough. Fix some such δ, ε.

Let H1,H2 be the image on the space ψ(X) under ψ of the knowledge σ-
algebras for players 1, 2 in ΓX , and extend these to σ-algebras on Ω by adding all
Borel subsets of Ω\ψ(X) and observing the generated σ-algebra. Since F is belief-
induced, there are knowledge σ-algebras for Players 3, . . . , n for some n ≥ 3,
H3, . . . ,Hn, such that F is the common knowledge σ-algebra of the knowledge
σ-algebras H1, . . . ,Hn; i.e., F = ∩np=1H

p.

By Proposition 9, we deduce that there is a common prior ν satisfying ||ν−µ|| ≤
δ such that the induced type space induced by ν, τ = (Ω, {1, . . . , n}, t1, . . . , tn),
is positive, where µ = ψ∗(µX) = µX ◦ ψ−1.
Now, define the payoffs by

rj(ω, x) =

{
rjX(ψ−1(ω, x) if j = 1, 2 and ω ∈ ψ(X)
0 otherwise

By the properties of ΓX listed above and for ε chosen above, the game

Γ = (Ω, {L,R}n, {1, 2, 3, . . . , n}, t1, t2, t3, . . . , tn, r1, r2, r3, . . . , rn)

which has common prior ν, does not possess an ε-MBE �
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8. PROOF OF THEOREM 3

The proof of Theorem 3.I was already given in Section 6. To prove Theorem
3.II, we first note that it holds on the example ΓX given in Section 3, as explained
there, and in fact using only two players. The common knowledge equivalence
relationship EX is easily seen to be hyperfinite - it is clearly induced by a Z-
action - and (X,EX),(X,E) are both non-smooth, where EX ,E denote the re-
spectively common knowledge equivalence relationships. Hence, by Proposition
11, (X,EX) @ (Ω,E) via an embedding ψ, and let µ be the induced measure -
µ = ψ∗(µ) = µ ◦ ψ−1. Last K be a common knowledge component in Γ such
that ψ−1(K) is one of those components in ΓX on which there is an acceptable bet
(f1, f2) (with f1 = −f2). By assumption, this is true for µ-a.e. component K.

We need to show that there is an acceptable bet in K. A modified definition
(compare with (3.2)) of an acceptable bet which is helpful is that of a Dutch book:
In this case, we require

∑
p fp < 0 and Ep[fp | ·] > 0 at each point for each

player. More generally, if L ⊆ K, we will say that (fp)p∈P is a Dutch book in
L if these inequalities hold throughout L. It’s easy to show that the existence of
an acceptable bet (on a countable space, or any subset of it) is equivalent to the
existence of a Dutch book.

In our case, we begin with an acceptable bet for Players 1, 2 on a subset of K:
Indeed, it is the image under ψ of the acceptable bet on ψ−1(K). Hence, we also
have a Dutch book for these players on that subset - and we need to show that there
is a Dutch book on the entire space:

Proposition 21. Let ΓK = (K,P, (tp)p∈P) be a countable positive25 type space
such that K does not strictly contain any non-empty common knowledge set, let
Q ⊆ P and L ⊆ K, and suppose there is an Dutch book for the players in Q on L.
Then there is a Dutch book for all the players in P on all of K.

Note that the fact that L is not common knowledge for all players is not relevant;
in fact, we do not even make use of the fact that it is common knowledge for the
players in Q. Also note that the assumptions imply thatEp[gq | ·] ≥ 0 for all q ∈ Q
on all K.

Proof. First, we observe that there exists such a Dutch book for all players in P on
all of K: If we define (gp)p∈P\Q to be positive but small enough in L and vanish
outside of L, then (gp)p∈P is a Dutch book in L and we still have Ep[gp | ·] ≥ 0
for all p ∈ P on all K. Fix some M > supp∈P,ω∈L |gp(ω)|.
Now, we proceed inductively and keep enlarging L: Let ω0 ∈ K\L and p0 ∈ P

be such that Kp0(ω0) ∩ L 6= ∅; if there are no such ω0, p0, then we are done by
the assumption that there are no subsets which are common knowledge. Fix some

25We could modify the proof to include the non-positive case, but it would be unnecessary and
also somewhat more cumbersome.
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ω1 ∈ Kp0(ω0) ∩ L. By assumption, Ep0 [gp | ω0] = Ep0 [gp | ω1] > 0. Let

γ =
1

2
min

−∑
p∈P

gp(ω1), tp0(ω0)[ω0] · (M − sup
p∈P,ω∈L

|gp(ω))|


By assumption of (gp) being a Dutch bet in L, γ > 0. Hence, define (g′p)p∈P by:

g′p(ω) =


gp(ω) if p 6= p0, ω 6= ω0 or p = p0, p 6= ω0, ω1

gp(ω) + γ if p = p0, ω = ω1

gp(ω)− γ · t
p0 (ω0)[ω1]
tp0 (ω0)[ω0] if p = p0, ω = ω0

gp(ω) + γ
|P| ·

tp0 (ω0)[ω1]
tp0 (ω0)[ω0] if p 6= p0, ω = ω0

It is then easy to check that (g′p)p∈P is a Dutch book onL∪{ω0}which still satisfies
Ep[g′p | ·] ≥ 0 for all p ∈ P on all K (note that Ep0 [gp0 | ω0] = Ep0 [g′p0 | ω0], and
all others payoffs have decreased nowhere and have increased at ω0). Furthermore,
we still have M > supp∈P,ω∈L |g′p(ω)|. Now repeat the procedure with L ∪ {ω0}
replacing L; the resulting Dutch book from this process will also be bounded by
M . �

9. A FURTHER RESULT: AGREEING TO AGREE

In this section we assume that there are only two players. The following defini-
tions are taken from Lehrer and Samet (2011):

Definition 22. Let E be an event in the state space (Ω,B) with information struc-
ture (Π1,Π2) and type functions (t1, t2). An agreement on E is an event of the
form

{ω ∈ Ω | t1(ω)(E) = t2(ω)(E) = p}
for some 0 < p < 1. We say that agreeing to agree is possible for E (with µ) if
there is a common prior µ for the type functions t1, t2 and an agreement A on E
such that µ(K∞(A)) > 0.

We also define an ignorance operator as in Lehrer and Samet (2011):

Definition 23. The event that Player p is ignorant of event E is

Ip(E) = (Ω\Ki(E)) ∩ (Ω\Ki(Ω\E))

and I(E) := I1(E) ∩ I2(E).

In addition, for event F , we define the knowledge operator Kp
F , which is the

knowledge operator induced by the partition generated Πp and {F,Ω\F}, and we
define the associated higher-order knowledge operators, the common knowledge
operator K∞F , as well as the operator IF .

Theorems 1 and 2 from Lehrer and Samet (2011) can be summarized as follows:

Theorem 5. Assume the state space is countable.26 The following conditions are
equivalent for an event E:

26 Countable sets are automatically endowed with the discrete σ-algebra.
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(i) Agreeing to agree is possible for E (with some common prior).
(ii) There exists a non-empty finite event F such that F ⊆ K∞(I(E)) and

F ⊆ K∞F (IF (E)).
(iii) Agreeing to agree is possible for E with a common prior with finite sup-

port.

As remarked in Lehrer and Samet (2011), the implication (ii)→ (i) holds even
if the state space is uncountable; but, by example, the converse direction does not
hold. We wish to prove the following, answering an open problem raised in Section
5.1 of Lehrer and Samet (2011).

Theorem 6. Assume that the state space (Ω,B) is standard Borel. Assume the
player’s knowledge structure is such that the common knowledge σ-algebra F is
separable. Let µ be a common prior. The following conditions are equivalent for
an event E:

(i) Agreeing to agree is possible for E with µ.
(ii) There exists an event F with µ(F ) > 0 such that F ⊆ K∞(I(E)),

F ⊆ K∞F (IF (E)), and such that the intersection of F with any common
knowledge component is finite.

(iii) Agreeing to agree is possible for E with a common prior ν, which is ab-
solutely continuous w.r.t. µ, for which there exists a Borel set G, intersect-
ing each common knowledge component in finitely many points, such that
ν(G) = 1.

Proof. Regardless of whether F is separable or not, by taking ν(·) = µ(· | F ), we
see that (ii) implies (iii); also, that (iii) implies (i) is immediate.

To prove that (i) implies (ii), we rely on the countable case. For each com-
mon knowledge component C, let I(·, C), K(·, C) and, for each H ⊆ C let
IH(·, C),KH(·, C) denote the versions of the operators I(·),K(·), IH(·),KH(·)
restricted to C. Note that if C is a collection of common knowledge components
and A,H ⊆ ∪C∈CC are any sets, then

K(A) = ∪C∈CK(A ∩ C,C)

and similarly for K∞ and I , while

KH(A) = ∪C∈CKH∩C(A ∩ C,C)

and similarly for K∞H and IH . (Intuitively, these operators apply independently on
each common knowledge component.) Define a correspondence from the standard
Borel space Ω/F to the standard Borel space Z of non-empty finite subsets of Ω
(identified with Ω∗ modulo the appropriate permutations):

Θ(C) = {F ∈ Z | F ⊆ K∞(I(E ∩ C,C)) and F ⊆ K∞F (IF (E ∩ C,C), C)}
We note that since the common knowledge σ-algebra is separable, there is by
Theorem 1 a mapping ρ from Ω/F to probability distributions, assigning to each
common knowledge component a common prior on it. We contend that there is
C ⊆ Ω/F satisfying µ(C) > 0 (where µ also denotes the measure induced on
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Ω/F) such that, for all C ∈ C, agreeing to agree is possible for E ∩ C with ρ(C).
Indeed,

0 < µ(K∞(E)) =

∫
Ω
ρ([ω])(E ∩ C)dµ(ω) =

∫
Ω/F

ρ(C)(E ∩ C)dµ(C)

Hence, by Theorem 5, Θ(C) 6= ∅ for all C ∈ C. By the Aumann selection theorem
(e.g., Himmelberg (1975)), up to the need discard a set of measure zero, there is a
Borel mapping θ : C → Z such that θ(C) ∈ Θ(C) for all C ∈ C. Since this map
is clearly injective (θ(C) ∩ θ(C ′) = ∅ in fact if C 6= C ′) its image is Borel,27 and
hence it’s easy to see that so is F = ∪C∈Cθ(C). This F is the required set, since

F = ∪C∈Cθ(C) ⊆ ∪C∈CK∞(I(E ∩ C,C)) = K∞(I(E))

and similarly

F = ∪C∈Cθ(C) ⊆ ∪C∈CK∞F∩C(IF∩C(E ∩ C,C)) = K∞F (IF (E))

�

10. EXTENSIONS AND VARIATIONS

10.1. Countable Partitions. Consider the following natural model. Let the con-
tinuum states be represented by the real numbers in the interval [0,1] and suppose
that following receipt of a signal each player gives positive support to a sub-interval
of [0,1]. Further assume that players are limited to some finite accuracy in their
measurements and therefore the end-points of the sub-intervals in their posteriors
are limited to rational numbers. In that case there can only be a countable number
of distinct of partition elements in the posteriors.

Limiting the partitions to countable cardinalities is sufficient to guarantee the
existence of Bayesian equilibria, even when the cardinality of the support of every
posterior element is the continuum. This follows from Theorem 1 of Milgrom and
Weber (1985), because the countable cardinality of the partition elements guaran-
tees that the game has absolutely continuous information, as defined in that paper.

10.2. Types with Countable Support. None of the results of this paper would
change if we allow for type spaces with countable support; that is, for each ω ∈ Ω
and each Player p, tp(ω) is a purely atomic (but not necessarily finitely supported)
Borel measure. The proofs all remain largely the same, with only minor alterations.
The condition of belief induced also remains unaltered:

Proposition 24. A countable Borel equivalence relationship E is belief induced
iff there are smooth countable Borel equivalence relationships E1, . . . ,En which
generate E.

Proof. Since clearly the countable Borel equivalence relationship generated by a
single player’s type is smooth, it suffices to show that if E is a smooth count-
able Borel equivalence relationship, then there are Borel equivalence relationships

27This follows from Kuratowski’s theorem.
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E1,E2 with finite equivalence classes which generate E. Let g1, g2, . . . correspond
to F - the σ-algebra induced by E - as in Proposition 10. For convenience, we write
{gm(ω), gn(ω)} even if ω is not in one or both of the domains of gm, gn; in these
cases, this set is either empty (if in neither domain) or consists of a single element
(if belonging to one domain). Then set,

E1 = {(x, y) ∈ Ω× Ω | ∃q ∈ Ω/F, k ∈ N, (x, y) ⊆ {g2k−1(q), g2k(q)}}
E2 = {(x, y) ∈ Ω× Ω | ∃q ∈ Ω/F, k ∈ N, (x, y) ⊆ {g2k(q), g2k+1(q)}}

It is easy to see that the equivalence classes of E1,E2 are all of size at most 2, and
that E is generated by E1,E2. �

11. APPENDIX: ON BELIEF INDUCED RELATIONSHIPS

As we have mentioned, not all countable Borel equivalence relationships are
belief induced. This can be shown using the concept of the cost of a countable
Borel equivalence relationship E with an invariant28 measure µ. We briefly recall
this concept; for a more comprehensive treatment, see Kechris and Miller (2004).

A Borel graph G on a standard Borel space Ω is a Borel relation on Ω (i.e., a
Borel subset of Ω×Ω) that is irreflexive and symmetric. A Borel graph G induces
a Borel equivalence relationship E on Ω: E is the reflexive and transitive closure
of G. We say that G is a graphing of E. Given such a graph, for each v ∈ Ω, let
dG(v) ∈ {0, 1, 2, . . . ,∞} denote the cardinality of the set {w ∈ Ω | (v, w) ∈ G}.
Clearly, if dG(v) is countable for all v ∈ Ω, then so is the induced equivalence
relationship E; conversely, if E is a countable Borel equivalence relationship, then
it is induced by some Borel graph with vertices of countable degree (this follows
easily, e.g., from Proposition 4).

The cost of a countable Borel equivalence relationship E (with respect to an
invariant measure µ) is defined as:

Cµ(E) := inf{1

2

∫
Ω
dG(ω)dµ(ω) | G spans E}

A result of Levitt, e.g. (Kechris and Miller, 2004, Ch. 20), is that if T is a Borel
transversal for a countable Borel equivalence relationship E with an E-invariant
measure µ, then Cµ(E) = µ(Ω\T ); in particular, if µ is finite, then so is Cµ(E).

Suppose that E is a countable Borel equivalence relationship, and is the equiv-
alence relationship generated by E1, . . . ,En (that is, the coarsest equivalence rela-
tionship that each Ek refines), and suppose that µ is E-invariant. It is then clearly
also Ek invariant for each k = 1, . . . , n, and it’s easy to see that29

Cµ(E) ≤
n∑
k=1

Cµ(Ek)

28 A (not-necessarily finite) measure is E-invariant if for every Borel bijection f : Ω → Ω
satisfying f(ω) ∼E ω for all ω ∈ E, it holds that for all Borel A ⊆ Ω, µ(f−1(A)) = µ(A).

29 Note that µ is Ek-invariant for each k = 1, . . . , n; hence, for any graphings G1, . . . , Gn of
E1, . . . ,En, respectively, G = ∪n

k=1Gn spans E.
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Combining this observation with the result of Levitt – and the fact that finite30 Borel
equivalence relationships are clearly always smooth31 – we see that if E1, . . . ,En
are finite, Cµ(E) is finite.

Hence, to show a non-belief induced countable Borel equivalence relationship,
it suffices to find one with infinite cost w.r.t. some invariant measure E on it. A
result of Gaboriau, e.g. (Kechris and Miller, 2004, Cor 27.10), states that if E is a
countable Borel equivalence relationship with finite invariant measure µ, and T is
a Borel tree32 that is a graphing of E, then Cµ(E) = 1

2

∫
Ω dT(ω)dµ(ω).

Now, let F∞ denote the free (non-abelian) group with countably many genera-
tions. This group acts on 2F∞ via (f(x))(g) = x(f · g) for x ∈ 2F∞ , f, g ∈ F∞,
and induces a countable Borel equivalence relationship by x ∼ y iff ∃g ∈ F∞ with
g ·x = y. From this, one deduces easily that if µ =

∏
f∈F∞(1

2 ,
1
2) (which is clearly

E-invariant) it holds by Gaboriau’s result that Cµ(E) =∞.
We also need to complete the following:

Proof. (Proof of Proposition 9) It’s enough to find some common prior ν with pos-
itive types which is not necessarily close to µ, because then we can replace ν with
εν + (1− ε)µ and similarly mix the types we had constructed previously with the
types resulting from the proper RCD’s of µ w.r.t. the knowledge structures.

Let Gp be a countable group which generates the knowledge structure Fp, as
in Proposition 4. Let G be the countable group generated by G1, . . . , Gp. Let
(αg)g∈G be some collection of positive real numbers which sum to unity, and let

ν =
∑
g∈G

αgg∗(µ)

where g∗(µ) = µ ◦ g−1, let τp be a proper RCD of ν w.r.t. to Fp for each p ∈ P.
It follows from Proposition 8 that the set N of ω for each tp(ω)[ω] = 0 for some
p ∈ P is of ν-measure 0. We contend that ν(K(N)) = 0: Once we have this,
one can redefine the types in an arbitrary measurable and positive way (while still
assuring that they generate F1, . . . ,Fn on K(N), of course; for example, for ω ∈
K(N) and p ∈ P, let tp(ω) be uniform on K(ω)); ν remains a common prior for
the altered types.

In fact, we contend that for each g ∈ G, g sends ν-null sets to ν-null sets;
this will suffice, since the group G generates the common knowledge equivalence
relationship (in the sense of Proposition 4.

30 An equivalence relationship is called finite if its equivalence classes are all finite.
31 One can see that finite Borel equivalence relationships are always smooth, for example, by

taking a Borel ordering < on Ω, and choose the <-minimal element in each equivalence class to get
a transversal

32 A Borel tree is a Borel graph with no cycles.
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So fix g0 ∈ G, and let N be any null set. Observe that

ν(N) =
∑
g∈G

αgg∗(µ)(N)

and hence g∗(µ)(N) = 0 for all g ∈ G; hence,

ν(g(N)) =
∑
g∈G

αgg∗(µ)(g0(N)) =
∑
g∈G

αg(g·g−1
0 )∗(µ)(N) =

∑
g∈G

αg·g0(g)∗(µ)(N) = 0

�
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