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Abstract

We study the inherent limitations of natural widely-used classes of ascend-

ing combinatorial auctions. Specifically, we show that ascending combinatorial

auctions that do not use both non-linear prices and personalized prices can not

achieve social efficiency with general bidder valuations. This casts doubt on the

performance that can be achieved using the simpler auctions suggested, e.g., by

Kwasnica et al. (2005),Porter et al. (2003) and Wurman and Wellman (2000)

and justifies the added complexity in the auctions suggested by, e.g., Parkes and

Ungar (2000) and Ausubel and Milgrom (2002).

Our impossibility results are robust in several senses: they allow the analy-

sis of all the information that was aggregated during the auction rather than

considering only the final price level; they hold for any price update system

or payment determination rule; they do not depend on strategic aspects, on

computational limitations or on communication capacities. We also show that

the loss of efficiency is severe and that only a diminishing fraction of the social

welfare may be captured.
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1 Introduction

Combinatorial auctions are a general name given to auctions in which multiple het-

erogeneous items are concurrently sold and in which bidders may place bids on com-

binations of items rather than just on single items. Such combinatorial bidding is

desired whenever items sold are complements or substitutes of each other, at least for

some of the bidders. In such cases, the combinatorial bidding allows the bidders to

better express their complex preferences, allowing the auction to achieve higher social

welfare, and often (but not necessarily) higher revenue as well. Combinatorial auc-

tions have been used in many settings such as truckload transportation (Ledyard et al.

(2002); Sheffi (2004)), airport slot allocation (Rassenti et al. (1982); Cramton (2002a)),

industrial procurement (Bichler et al. (2006)), and, prominently, spectrum auctions

(Cramton (2002b); FCC Auctions (2006)). Additionally, combinatorial auctions serve

as a common abstraction for many resource allocation problems in decentralized com-

puterized systems such as the Internet, and may serve as a central building block of

future electronic commerce systems.

The design of combinatorial auctions faces multiple types of complexities: infor-

mational, cognitive, computational, and strategic. Indeed, the design of combinatorial

auctions is still part art and part science. While many aspects have been analyzed

mathematically or empirically, many other aspects remain an art form. In many cases

the design is ad-hoc for a given application, and it is usually not clear how well the

existing design performs relative to the other non-implemented alternatives. Indeed,

when the US Federal Communications Commission held a series of workshops address-

ing the intended design of their multi-billion dollar combinatorial auctions for radio

spectrum (see, e.g., FCC Combinatorial Bidding Conference (2003)), there has been

very little agreement among the participants. We refer the reader to the recent tomes

(Cramton et al. (2006),Milgrom (2004)) that elaborate on various aspects, applications

and suggestions for combinatorial auctions.

This paper concerns a large class of combinatorial auction designs which contains
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the vast majority of implemented or suggested ones: ascending auctions. In this class of

auctions, the auctioneer publishes prices, initially set to zero (or some other minimum

prices), and the bidders repeatedly respond to the current prices by bidding on their

most desired bundle of goods under the current prices. The auctioneer then repeatedly

updates the prices by increasing some of them in some manner, until a level of prices is

reached where the auctioneer can declare an allocation. (Intuitively, prices related to

over-demanded items are increased until the demand equals supply.) There are several

reasons for the popularity of ascending auctions, including their intuitiveness, the fact

that private information need only be partially revealed, that they increase the trust

in the auctioneer as bidders see the prices gradually emerging, that it is clear that they

will terminate and that they may sometimes reduce the winner’s curse and increase the

seller’s revenue (Milgrom and Weber (1982)). Another major advantage of ascending

auctions is that they afford a price-discovery process in markets where bidders do not

know their exact valuations for every possible bundle, and determining these values is

costly in practice. Ascending auctions, however, guide the attention of the bidders to

bundles that are relevant to the allocation determination. Although their equilibrium

analysis is not always clear, ascending auctions are usually preferred over sealed-bid

VCG auctions since the latter auctions suffer from several severe weaknesses, such as

low seller revenue and vulnerability to collusion and false-name bidding. A survey

by Cramton (1998) describes in more details the advantages and disadvantages of

ascending auctions, and papers by Rothkopf et al. (1990) and Ausubel and Milgrom

(2006) discuss the practical flaws of VCG auctions.

Ascending auctions may vary from each other in the bidding rules, in the price

update scheme, in the termination condition, etc. The most notable difference is in

the types of prices used. Some auctions attach a price to each item, and the price of

each bundle of items is the sum of the item prices. Such auctions are termed item-

price auctions or linear-price auctions. A more general class of auctions maintains

a separate arbitrary price for each bundle of items. These are called bundle-price
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auctions or non-linear price auctions. Some auctions present the same set of prices

to all bidders – these are called anonymous-price auctions. Others maintain a sep-

arate set of prices for each bidder – these are called personalized price auctions (or

non-anonymous price auctions). It is clear that item-price auctions are preferable to

bundle-price ones in terms of simplicity, and similarly that anonymous-price ones are

simpler than personalized-prices ones. This simplicity is important in many respects,

including the cognitive, computational, and communication burden placed on the bid-

ders and on the auctioneer. In particular, such auctions tend to be simpler to bid on,

will run faster, and will require less communication and computation and thus will

be feasible for a larger number of items. The question is really whether the added

expressiveness of the more complex types of auctions offers benefits that overcome

the cost in complexity. Indeed, presentations at the 2003 conference of the U.S. Fed-

eral Communications Commission (FCC Combinatorial Bidding Conference (2003))

reveal an interesting debate along these lines between the suggestions of David Porter,

Stephen Rassenti and Vernon Smith (on the simplicity side) and of Larry Ausubel,

Peter Cramton and Paul Milgrom (on the complexity side).

1.1 Ascending Auctions and Equilibrium Prices

Most of the literature on iterative combinatorial auctions centered on the existence of

competitive equilibria. It is known that both bundle prices and non-anonymous prices

are required for guaranteeing the existence of such equilibria, see, e.g., Bikhchandani

and Ostroy (2002); Milgrom (2000a); Scarf (1960). Otherwise, strict restriction on

the preferences are necessary for obtaining competitive equilibria. In particular, item-

price equilibria are known to exist when the bidders have substitutes valuations, see

Kelso and Crawford (1982), and anonymous bundle-price equilibria exist when the

bidders have complementarities, i.e., when all bidders have super-additive valuations1,

1A valuation v is super-additive if for every two disjoint bundles S, T we have that w(S)+w(T ) ≤
w(S ∪ T ).
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see the work of Parkes (2001). However, in most setting one would not expect such

homogeneity of the preferences of the bidders. A bidder may consider some of the

items as substitutes and some as complements, or some bidders may have substitute

valuations and the preferences of the other may possess complementarities. In many

of these cases, an equilibrium typically does not exist, but ascending auctions may still

be in use. This paper analyzes auctions that run in environments where an equilib-

rium does not exist, and measures whether such auctions can guarantee efficiency, or

approximate efficiency. We consider a general model where the decisions can be made

using all the information that was collected during the course of the auction and not

only based on demand at the final price level.

Consider, for example, one of the most successful family of combinatorial auctions

– Simultaneous Ascending Auctions (SAA). These auctions have been running by the

U.S. FCC beginning in 1994, and they have been adopted for dozens of spectrum

auctions worldwide. They were proposed to the FCC by Paul Milgrom, Robert Wil-

son and Preston McAfee and they are a natural extension of “Deferred-Acceptance

Mechanisms” from the literature on matching (see the survey by Roth and Sotomayor

(1992)). One of the main reasons for their success is their simplicity: all items are

sold at the same time, and the bidders can bid on any item; the auction increases the

price of over-demanded items until every item is demanded by at most one bidder.

SAA were theoretically analyzed in the work of Kelso and Crawford (1982), Demange

et al. (1986), Gul and Stacchetti (1999) and Milgrom (2000a). The basic theorem

shows that if all bidders have (gross) substitutes valuations, then this converges to a

competitive (Walrasian) equilibrium and thus leads to social efficiency. The restriction

to having (gross) substitutes valuations is known to be critical; for example, Gul and

Stacchetti (1999) show that for any bidder whose preferences fail the substitutes con-

dition we can add a set of unit-demand bidders such that the resulting economy has

no Walrasian equilibrium. However, empirical results by Ausubel et al. (1997) show

that in the US spectrum market there are clear evidences that bidders have synergies
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(or complementarities) for neighboring licenses, proving that the substitutes condition

does not hold. Therefore, Simultaneous Ascending Auctions are not guaranteed to end

up in any sort of equilibrium in the FCC auctions. Our work studies whether such

auctions, or their variants, can be efficient despite the lack of efficient equilibria, and

whether they can provide a reasonable approximation for the efficiency loss.

Another prominent family of ascending auctions was recently introduced in the

work of Parkes and Ungar (2000) and Ausubel and Milgrom (2002). These auctions

always end up with a socially-efficient allocation and use personalized bundle prices.

The main idea here is that the auctioneer computes, at each stage, an optimal tentative

allocation, and then losers in this tentative allocation are allowed to increase their bids.

The basic theorem states that when no loser wants to increase his bid, then an optimal

allocation has been reached. This holds for arbitrary bidder valuations.

1.2 Our Contribution

The fundamental question that we address is whether the added complexities of bun-

dle prices and of personalized prices are indeed necessary for achieving efficient results

by ascending-price auctions. We present a strong affirmative answer on both counts.

We prove that no ascending item price auction (using anonymous or personalized

prices) can always reach a socially-efficient allocation among arbitrary bidder valua-

tions. Similarly, we prove that no ascending anonymous-price auction (using either

item prices or bundle prices) can always reach the socially optimal allocation. Our

basic theorems are proved by analyzing two very simple scenarios in which we show

that the appropriate type of auction can simply not gather sufficient information from

the bidders.

We then prove several stronger variants of our theorems showing that our impossi-

bility results are very robust is several senses. We show that not only is it impossible

for an ascending item-price auction to obtain the social optimum, but even if we allow

multiple, sub-exponentially many, “ascending paths” (e.g., as used in Ausubel (2006)),
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then the impossibility remains. We also show that the loss of welfare is extreme both

for item price auctions (even non-anonymous) and for anonymous-price auctions (even

with bundle prices), and that only a vanishingly small fraction of the social welfare

may be captured2. This last pair of results is proved using a sophisticated combina-

torial construction of valuations that are “hard to elicit” by these restricted types.

We also show that our examples are not “unusual” by showing that for any set of

substitutes bidders, it is possible to add a single extra bidder making it impossible

to find the social optimum by item-price auctions. Recall that in environments with

substitutes preferences, item-price Simultaneous Ascending Auctions are known to be

able to determine the efficient allocation. Actually, our results contribute to the no-

tion, originate in the work of Arrow et al. (1959) and Kelso and Crawford (1982), that

item-price ascending auction essentially work only with bidder valuations that satisfy

the (gross) substitutes property. Our results are stronger than the existing results,

as they allow using all the information that is elicited in the course of the auction,

study multiple ascending prices paths, and analyze how the rate in which inefficiency

intensify.

All of our results are in a very general setting: they do not rely on any incentive

constraints and hold even if bidders simply bid “as told”. As long as their response at

every stage is just a function of their desired bundles at the current prices, or any subset

of those bundles, the impossibilities hold. In particular the impossibilities do not rely

on any inter-dependencies between the bidders’ valuations and hold for simple private

values. Our impossibility results do not assume that any particular type of equilibrium

will be achieved upon termination, and hold whether or not any equilibrium is achieved

– they allow taking into account the whole amount of information obtained during

the auction. The results do not rely on any computational limitations or limitations

on the amount of communication that is transmitted, and hold even if unbounded

(and unrealistic) computation and communication capabilities are available to the

2Formally, we show that no better than a 4/
√

m fraction of welfare may be captured by each
auction type, where m is the number of items.
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auctioneer and bidders. Our analysis works for all price increments, even infinitesimal.

The bottom line of our paper is a formal analysis showing that simple combinatorial

auction schemes that use only item prices or that use only anonymous prices do have

severe informational limitations. This will not allow them to match the performance

guarantees of the more complex schemes. The exact tradeoff between these limitations

and the significant costs of the more complex scheme remains part of the “art” of

combinatorial auction construction.

1.3 More Related Work

While most previous work on combinatorial auctions has actually studied specific types

of auctions, a few other impossibility results have been shown that should be com-

pared to ours. First, are the known theorems (see, e.g., Bikhchandani and Ostroy

(2002); Scarf (1960); Kelso and Crawford (1982); Bikhchandani and Mamer (1997);

Milgrom (2000b); de Vries et al. (2005)) that for general, non-substitutes valuations,

certain types of competitive equilibria cannot be found without personalized bundle

prices. Note that item-price auctions with non-ascending prices can obtain the social

optimum, despite the lack of any equilibrium (Blumrosen and Nisan (2005)). Other

related results were proved by Nisan and Segal (2003) showing that exponential com-

munication is required by any type of combinatorial auction for obtaining the optimum.

These results are quantitative and are not delicate enough to qualitatively distinguish

between different types of auctions, as we do here. Additionally, such lower bounds on

the amount of the transmitted communication cannot be applied in our setting, as we

show in the paper’s body that an amount of information that is exponentially greater

than the number of items can be elicited by ascending auctions, even with item prices.

Probably the closest result to ours, in spirit, is by Gul and Stacchetti (2000) who

showed that ascending anonymous item-price auctions can not come up with VCG

prices even for (gross)-substitutes valuations, despite the fact that the social optimum

can be achieved in such cases. In contrast, our impossibility is for just finding the
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optimum, or even a reasonable approximation, rather than calculating a particular

set of prices. Additionally, in contrast to our results, the impossibility in Gul and

Stacchetti (2000) is very delicate, and stops holding if multiple ascending rounds are

allowed, as in Ausubel (2006). Another close result is the recent paper by Mishra and

Parkes (2005), who presented a class of efficient bundle-price non-anonymous ascending

auctions that compute VCG payments. Their work allows the payments made by each

bidder to be different from the final clearing prices, but their auction still aims to

terminate with equilibrium prices (they call Universal Competitive Equilibrium), and

therefore our definition of an ascending auction is broader.

The structure of the rest of the paper is as follows: in section 2 we formally present

our model and definitions. Section 3 gives the impossibility results for item-price auc-

tions, while section 4 gives the impossibility results for anonymous-price auctions. In

the body of the paper we provide the full (and simple) proofs of the basic impossibility

theorems; the proofs of the stronger variants are postponed to the appendix. Appen-

dix A contains some definition to be used in proofs that appear later in Appendices B

and C.

2 The Model

A seller wishes to sell a set M of m heterogeneous indivisible items to a set of n bidders.

Each bidder i has a valuation function vi : 2M → R+ that attaches a non-negative real

value vi(S) for any bundle S ⊆ M . We assume two conventional assumptions on the

preferences: (i) Free disposal (monotonicity), i.e., if S ⊂ T then vi(S) ≤ vi(T ). (ii)

Normalization, i.e., vi(∅) = 0 for every bidder i.

The goal of the auctioneer is to find an efficient allocation of the items, that is, to

find a partition S1, ..., Sn of the items that maximizes the social welfare,
∑n

i=1 vi(Si).

We do not study revenue maximization in this paper.

In this work, we concentrate on iterative auctions where, at each stage, the auc-

tioneer publishes a set of prices p for the bundles, and each bidder responds with her
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demand given the published prices, that is, a bundle S that maximizes her (quasi

linear) utility ui(S, p) = vi(S) − p(S), where p(S) denotes the price of S under the

price level p.3 The stages of the auction are ordered by time, and at each stage, a

single set of prices is presented to each bidder. The prices can be presented in different

ways. For example, the seller can explicitly publish a price for each bundle, or use a

succinct representation for the prices (e.g., by only publishing item prices). We touch

on several common representations below.

The specific auction is determined by the method that the auctioneer determines

which prices will be presented to the bidders at each stage. The seller can determine

the prices adaptively, i.e., as a function of the history of the published prices and

responses. The seller can also use information gained from the responses of one bidder

for determining the future prices for other bidders. At the end of the auction, the

auctioneer analyzes the information received during the auction, and determines the

final allocation accordingly. That is, the data that is available to the auctioneer at the

end of the auction is exactly {(pt
i, S

t
i )| for every bidder i and every stage t}, where St

i

denotes the demand of bidder i at stage t under the price vector pt
i. To strengthen

our results, and as opposed to most of the existing literature, we consider a general

model where the allocation can be determined by all the information gathered during

the auction, and not only according the demands at the final stage of the auction.

Note that, to strengthen our results, we do not assume any limitations on the power

of the participants, except for information limitations. In particular, the auctioneer

may be computationally unbounded (including, e.g., the ability to solve hard problems

classified as “NP-hard” in the computer-science terminology).

This paper centers on auctions with non-decreasing prices:

Definition 1. (Ascending auctions) In an ascending auction, each bidder responds

3All our results hold for any consistent tie-breaking rule by the bidders or by the auctioneer.
Moreover, our result will also hold if every bidder i reports, at each stage, all the bundles that
maximize her utility, i.e., her whole demand set {S ⊆ M | vi(S)− p(S) ≥ vi(T )− p(T ) for every T ⊆
M}. An equivalent model allows the bidders to raise their “bids” on their desired bundles.
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with his demand under every price level presented to him, and prices presented to the

same bidder can only increase in time. Formally, let p be a set of prices presented to

bidder i, and q be the prices for bidder i at a later stage in the protocol. Then, for all

sets S ⊆ M , we have q(S) ≥ p(S).

Two highly important factors in the design of ascending combinatorial auctions

concern the representation of the prices. First, the seller might choose to present only

prices for the individual items, or, with greater expressiveness, publish a price per

every possible bundle. Another pricing decision is whether to present personalized

prices for each bidder, or present every price level to all bidders.

Definition 2. (Item/Bundle prices) An auction uses item prices (or linear prices),

if, at each stage, the auctioneer presents a price pj for each item j, and the price of a

set S is additive: p(S) =
∑

j∈S pj. We say that an auction uses bundle prices (or non-

linear prices) if each bundle S may have a different price p(S) (which is not necessarily

equal to the sum of the prices of the items in S).

Definition 3. (Anonymous/Non-Anonymous prices) An auction uses anony-

mous prices, if the prices seen by the bidders at any stage in the auction are the same,

i.e., whenever a set of prices is presented to some bidder, the same set of prices is also

presented to all other bidders. In auctions with non-anonymous (personalized) prices,

each bidder i is presented with personalized prices for the bundles denoted by pi(S).4

Observe that with bundle prices, the number of distinct prices presented by the

seller in each stage may be exponentially greater than the number of items (a price

per every subset of items). Consequently, such auctions may be practically infeasible

when selling more than few items.

4Note that a non-anonymous auction can clearly be simulated by n parallel anonymous auctions.
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3 Item-Price Ascending Auctions

Before describing their limitations, we would like to demonstrate that item-price as-

cending auctions are not trivial in their power. The most prominent example is their

ability to end up with a Walrasian equilibrium (which is, in particular, efficient) for

environments with (gross) substitutes valuations, see Kelso and Crawford (1982) and

Gul and Stacchetti (1999).

We would also like to point out that despite using a linear number of item prices,

ascending auctions may elicit a very large amount of information from the bidders.

In particular, if small enough increments are allowed, such auctions can determine

the optimal allocation in cases where this task requires exchanging an amount of

information which exceeds the number of items by an exponential factor. This is

shown in Example 1 in Appendix B. Example 1 actually shows that our results

are incomparable with the hardness results of Nisan and Segal (2003), as item-price

ascending auctions in our model can elicit an exponential amount of information.

Without restricting the prices to be ascending, analyzing the demand of the bidders

under different price levels enables the auctioneer to easily determine the efficient

allocation in any combinatorial auction (see Blumrosen and Nisan (2005)). However,

as we show in this section, this is no longer true when the prices are restricted to be

ascending, even for settings with only two items and two bidders. After proving this

negative result, we strengthen it in several directions: in Theorem 1a, we show that

the number of ascending trajectories of prices that are required for finding the efficient

allocation is exponentially larger than the number of items; Then, in Theorem 1b, we

show that a single item-price ascending auction can only guarantee a small fraction

of the optimal welfare, a fraction that diminishes with the number of items. Finally,

Theorem 1c indicates that inefficiencies may rise for every profile of bidders with

substitutes preferences following an addition of a single bidder.

Our basic hardness result is given using the combinatorial auction setting in Figure

1. In this example, for determining the efficient allocation, the auctioneer has to know
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v(ab) v(a) v(b)
Bidder 1 2 α ∈ (0, 1) β ∈ (0, 1)
Bidder 2 2 2 2

Figure 1: This example shows that no item-price ascending auction can always determine
the optimal allocation: no such auction can tell whether α is greater than β or vice versa.

which one of the two singleton bundles has a greater value for Bidder 1. However,

an ascending auction can only elicit information about one of the singletons, so the

efficient outcome cannot be obtained. The basic idea is that in order to gain any

information about one of the singletons, the price of the other item must be increased

significantly, otherwise the bidder will continue demanding the whole bundle. Since

the prices cannot decrease, it follows that the demand of Bidder 1 will be independent

of his value for the latter item.

Theorem 1. No item-price ascending auction can determine the efficient allocation

for all profiles of bidder valuations.

Proof. Consider the two valuations described in Figure 1. All the values are known to

the auctioneer, except for the values α and β (between (0, 1)) that Bidder 1 attaches

to the singletons a and b, respectively. For such preferences, the only way to achieve

a welfare greater than 2 is to allocate one singleton to Bidder 1 and the other to

Bidder 2. Therefore, the identity of the efficient allocation depends on which of the

two singletons gains a greater value for Bidder 1. We prove that a single ascending

trajectory of item prices can reveal information only on one of these values. We first

claim that no information is elicited as long as both prices are low.

Claim 1. As long as pa and pb are both below 1, Bidder 1 demands the whole bundle

{ab}.

Proof. For every price level p in which both prices are smaller than 1, Bidder 1’s utility

from the bundle ab will be strictly greater than the utility from either a or b separately.

For example, we show that u1(ab, p) > u1(a, p) (the same statement for the singleton
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b can be similarly shown):

u1(ab, p) = 2− (pa + pb) (3.1)

= 1− pa + 1− pb (3.2)

> vA(a)− pa + 1− pb (3.3)

> u1(a, p) (3.4)

Where Equation 3.1 is due to the linearity of the prices, Inequality 3.3 holds since

vA(a) is smaller than 1, and Inequality 3.3 follows from the assumption that pb is

smaller than 1.

Thus, in order to gain any information about the unknown values α and β, the

auctioneer must arbitrarily (i.e., without any new information) choose one of the items

(w.l.o.g., a) and increase its price to be greater than 1. But then, since the prices are

ascending, the singleton a will not be demanded by Bidder 1 throughout the auction,

thus no information at all will be gained about α. Hence, the auctioneer will not be

able to identify the efficient allocation.

Since the valuation of one of the bidders is fully known in advance to the auctioneer,

the theorem holds even for non-anonymous item-price ascending auctions.

The proof of Theorem 1 describes a profile of preferences for which no ascending

trajectory of prices can elicit enough information for determining the optimal alloca-

tion. This would hold even if the auctioneer had some exogenous information (or a good

guess) telling him what is the “right” way to increase the prices.5 Similar arguments

show that this hardness result also holds for the similar family of descending-price

auctions (otherwise, the “reversed” price trajectory would be an ascending auction

that finds the optimal allocation).

5Protocols that allow the usage of an exogenous data are often named “non-deterministic” proto-
cols in the computer-science literature.
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Theorem 1 is proved as a worst-case result, but it also holds for a wide range of

probability distributions. For example, for any distribution of α and β between [0, 1],

and also when we draw any number of additional players from such distributions. It

is easy to see that for the uniform distribution (on α and β) the optimal ascending

auction with two bidders will raise the price of one of the items (say, a) until v1(b) is

determined, and then allocate b to bidder 1 if and only if v1(b) ≥ 1/2. Although the

expected inefficiency of such an auction is relatively low (less than 2 percent), we expect

the inefficiency to get worse as the number of items increase and the informational

difficulty of the seller becomes more severe. Later, in Theorem 1b, we will show an

extreme scenario where this inefficiency is very significant.

While Theorem 1 proved that a single ascending trajectory of prices cannot guar-

antee finding the efficient allocation, it does not rule out the possibility that a small

number of trajectories will achieve this goal. For instance, a similar question was

studied regarding the number of ascending auctions that are required for calculating

VCG prices for bidders with substitutes preferences: A negative result by Gul and

Stacchetti (2000) showed that the VCG payments for substitutes valuations cannot

be found by a single ascending-price trajectory; However, Ausubel (2006) presented

an (n + 1)-trajectory ascending auction that achieved this task. Below, we extend

the result presented in Theorem 1 and show that for guaranteeing that an efficient

allocation will be discovered, for all profiles of valuations, an exponential number (in

the number of items) of ascending-price trajectories is required.

We define a k-trajectory ascending auction as an auction in which the price vectors

presented to the bidders at the different stages of the auction can be partitioned into

up to k sets, ordered according to the time they were published, where the prices

published within each set only increase in time (for a formal definition, see Definition

7 in Appendix B). Note that we use a general definition; It allows the trajectories to

run in parallel or sequentially, and to use information elicited in some trajectories for

determining the future queries in other trajectories.
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The theorem is proved by presenting preferences for two bidders, where the efficient

allocation depends on the identity of a particular m
2
-sized bundle that gains one of the

bidders a high value. For eliciting information about the value of some m
2
-sized bundle

S, the prices of all the items that are not in S should be very high, otherwise a

larger bundle would be demanded. Therefore, every ascending auction can only reveal

information on a single m
2
-sized bundle. Since an exponential number of such bundles

exists, the theorem follows. The proof can be found in Appendix B.

Theorem 1a. The number of ascending item-price trajectories needed for revealing

the efficient allocation, for every profile of bidder valuations, must be exponentially

greater than the number of items.

Implicit in the proof of Theorem 1a is that an exponential number of ascending

item-price trajectories is necessary for guaranteeing more than a 2
3
-fraction of the

optimal welfare. Our next result presents a much stronger bound on the rate in which

the welfare in any single-trajectory ascending auction diminishes as the number of

items and players grow. Formally, no item-price ascending auction can guarantee

a fraction of the efficient welfare that is greater than max{ 4
n
, 4√

m
}. We emphasize

that this result even holds for non-anonymous item-price ascending auctions, that is,

auctions with a personalized ascending trajectory of prices per each bidder.

A sketch of the proof: we create a profile of valuations for the n bidders with

certain combinatorial properties that make them hard to be elicited by any ascending

auction. This is done by defining a set of bundles that form a special combinatorial

structure: we divide the items to several partitions; Every two bundles from different

partitions intersect (“mutually-intersecting partitions”), and therefore achieving the

optimal allocation is possible only by partitioning the items according to one of these

partitions. The values that each bidder attaches for these bundles are unknown to the

auctioneer and are either 0 or 1. To gain any information about one of these bundles,

the prices of every bundle from all the other partitions must exceed 1 (since the bidders

have a value of 2 for some larger bundles). It follows that the bundles from the other
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partitions will not be demanded any more during the ascending-price auction. This

way, the auctioneer can elicit information about bundles from at most one partition for

each bidder. This is shown to be insufficient for achieving a reasonable approximation

for the social welfare. The proof appears in Appendix B.

Theorem 1b. No item-price ascending auction (even with non-anonymous prices)

can guarantee better than a fraction of max{ 4
n
, 4√

m
} of the efficient welfare for all

profiles of bidder valuations.

Our final result regarding item-price ascending auctions illustrates that inefficien-

cies may occur even for preferences that are slightly away from having the substitutes

property. Substitutes preferences are, informally, preferences with the property that

when a bidder demands a certain bundle, and some of the prices in this bundle in-

crease, then the bidder will still demand the other items in this bundle (an exact

definition is presented in Definition 6 in Appendix B). As mentioned, it is well known

that item-price ascending auctions can determine the efficient allocation for substi-

tutes valuations. We show that for every profile of players with substitutes valuations,

the efficient outcome cannot be found after an addition of a single player. The proof

takes advantage of the fact that the aggregate demand of n substitutes valuations also

has the substitutes property. Therefore, the marginal contributions of bundles to the

welfare of the n players must exhibit complementarities. We construct a valuation

for the new player that obtains a greater value than the marginal values for some of

the bundles. Due to the presence of complementarities, we argue that an ascending

auction will not be able to determine which bundle obtains the highest additional gain.

This result applies for every profile of substitutes valuations, except for the de-

generate case where the aggregation of these players forms an additive valuation (i.e.,

where for every two disjoint bundles S, T , the aggregate valuation exhibits exactly

v(S) + v(T ) = v(S ∪ T )).6

6A valuation w is called the aggregation of the valuations v1, ..., vn if for every bundle S, w(S)
equals the optimal welfare achieved by allocating the items in S over the n players.
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Theorem 1c. For every n, and for every profile of n substitutes valuations that their

aggregation is not an additive valuation, there exists an additional bidder such that

no item-price ascending auction can determine the efficient allocation among the n+1

bidders.

4 Anonymous Ascending Auctions

All the ascending auctions in the literature that are proved to find the optimal al-

location for unrestricted valuations are non-anonymous bundle-price auctions (e.g.,

iBundle(3) by Parkes and Ungar (2000) and the “Proxy Auction” by Ausubel and

Milgrom (2002)). Yet, several anonymous ascending auctions with bundle prices have

been suggested (e.g., AkBA by Wurman and Wellman (2000), the PAUSE auction

by Kelly and Steinberg (2000), and iBundle(2) by Parkes and Ungar (2000)). The

power of such anonymous auctions is not trivial, as they can reach an efficient out-

come for super-additive preferences (Parkes (2001)). We first show that no anonymous

ascending auction can always find the efficient solution for general valuations, even for

environments with only two bidders and four items, and even if it is allowed to use

bundle prices. Later in this section, we extend this negative result and show that such

auctions can only guarantee a diminishing fraction of the social welfare.

In Figure 2, we present a class of valuations for which the efficient allocation

cannot be determined by any anonymous bundle-price ascending auction. The basic

idea: In the example, Bidder 1 and Bidder 2 have unknown values for some bundles

S1 and S2, respectively. However, Bidder 1 also has a high value for S2 and bidder

2 has a high value for S1. Therefore, in order to reveal information about v1(S1),

the price of S2 must be increased significantly, and thus “hide” the value v2(S2).

Similarly, for gaining information about v2(S2) the price of S1 must increase, “hiding”

the value v1(S1). This stems from the anonymity of the auction – the bidders face the

same ascending trajectory of prices. Consequently, the auctioneer will only be able

to attain information about both values, what will prevent him from identifying the
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Bidder 1 v1(ac) = 2 v1(bd) = 2 v1(cd) = α ∈ (0, 1)
Bidder 2 v2(ab) = 2 v2(cd) = 2 v2(bd) = β ∈ (0, 1)

Figure 2: This example shows that anonymous ascending auctions cannot always determine
the efficient allocation. The value of every bundle that is not explicitly specified equals to
the maximal value of a bundle it contains.

efficient allocation.

Theorem 2. No anonymous bundle-price ascending auction can determine the effi-

cient allocation for all profiles of bidder valuations.

Proof. Consider the pair of valuations described in Figure 2. Each bidder has a value of

2 for two 2-item bundles, and some unknown value, between 0 and 1, for a third 2-item

bundle. The values of the other bundles equals the maximal value of a bundle that

they contain. For finding the optimal allocation the auctioneer must know whether

α is greater than β or vice versa: If α > β, the optimal allocation will allocate cd to

Bidder 1 and ab to bidder 2. Otherwise, it should allocate bd to bidder 2 and ac to

Bidder 1. Notice that since each item can be allocated only once, at most one bidder

can gain a value of 2.

In an anonymous ascending auction, however, one can only elicit information on

one of the values α and β: as long as the prices of both cd and bd are below 1, both

bidders will clearly demand their high-valued bundles (that gain them utilities greater

than 1). Therefore, in order to elicit any information, the auctioneer must raise one

of these prices to be greater than 1, w.l.o.g., the price of bd. Thus, since the prices

cannot decrease, no information will be gained about β.

We now strengthen the impossibility result above by showing that anonymous

auctions, even with bundle prices, cannot guarantee more than a vanishing fraction

of the social welfare, namely, at most a 4√
m

-fraction of the efficient welfare. Using

bundle prices may be appealing when each bidder is interested in a small number of

bundles, but this pricing method may become impractical due the exponential number

of potential prices. Note that a similar fraction of the optimal welfare, O( 1√
m

), can be
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achieved using a significantly smaller amount of prices (that is, with polynomial-sized

communication - see, e.g., Blumrosen and Nisan (2005)).

For proving the limitations of anonymous auctions, we build a profile of valuations

that, due to certain combinatorial properties, cannot be solved by anonymous ascend-

ing auctions. These preferences are different than those used in Theorem 1b. Never-

theless, we use the same combinatorial construction of mutually-intersecting partitions

that was introduced in the proof for Theorem 1b. Recall that mutually-intersecting

partitions are a set of partitions of the items with the property that every two bundles

from different partitions have at least one item in common. We show that for the class

of valuations that we build, before the auctioneer elicits any information, the prices of

all the bundles from some partition should exceed 1. Since all the unknown values are

below 1, an anonymous ascending auction will gain no information about the values

that the bidders have for the bundles in this partition. Allocating bundles from this

partition to different bidders may form an efficient allocation, but the auctioneer will

not have enough information to correctly match those bundles to the bidders. We

refer the reader to the full proof in Appendix C.

Theorem 2a. No anonymous ascending auction can guarantee better than a fraction

of max{ 4
n
, 4√

m
} of the efficient welfare for all profiles of bidder valuations, even when

it uses bundle prices.

A slight variation of the preferences in the proof of Theorem 4 – when only one

of the low-valued bundles has a positive value – shows an instance where at least n

ascending bundle-price trajectories are required in order to find the efficient allocation.

This gives an easy bundle-price equivalent to Theorem 3. This result is tight, as

there exist efficient non-anonymous bundle-price auctions; such auctions are clearly

composed of n price trajectories.
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5 Conclusion

This article considered ascending-price auctions for combinatorial auctions. It pre-

sented several impossibility results, providing insights about the power of different

pricing models for such auctions. The paper showed that both bundle prices and

personalized prices are necessary in order to achieve efficient, or even approximately

efficient, outcomes by ascending combinatorial auctions. Proposals for other kinds of

ascending auctions carry the burden of proof for showing that good results can occur

in their particular settings.
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A Critical Price Levels

In this subsection we give a simple, formal argument, to be used in the proofs of

the impossibility results, saying that if an auction does not give an opportunity for
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a bidder to demand some bundle S, by presenting relevant levels of prices (“critical

price levels”), then the auction reveals no information at all about the value of S.

Some notations that describe the uncertainty of the auctioneer regarding the bid-

ders: Denote the set of all the possible valuations for bidder i by Vi. Also denote

the set of all possible values for the bundle S in Vi by Qi(S) = {vi(S) | vi ∈ Vi}.
Finally, denote the set of the possible values for the bundle S, given that the realiza-

tion of the value of some other bundle T is cT , by Qi(S | vi(T )=cT ) = {vi(S) | vi ∈
V and vi(T )=cT}.

First we define informationally-independent classes of valuations – valuations where

obtaining information regarding any set of bundles adds no new information about the

possible values of other bundles.

Definition 4. We say that a set Vi of valuations for bidder i is informationally in-

dependent, if for any bundle S, and any realization of the values of the other bundles

{cT}T 6=S, the set of possible values for S remains unchanged. Namely, for every S ⊆ M ,

Qi(S) = Qi (S | vi(T ) = cT for every T 6= S)

Definition 5. Denote the class of all possible valuations of bidder i by Vi. We say

that the price level p is critical for Bidder i with respect to the bundle S, if for some

vi ∈ Vi, Bidder i demands the bundle S under the price level p.

The next easy proposition implies that if no critical price vector is presented to a

bidder regarding some bundle S, then no information at all will be elicited on the value

of this bundle when the valuations are informationally independent. The proposition

also holds for non-ascending auctions, and for all pricing schemes.

Proposition 1. Consider a bidder i, with an informationally-independent set of pos-

sible valuations Vi. If an auction reaches no critical price level for Bidder i with respect

to a bundle S, then, at the end of the auction, no information is revealed on the value

of S, that is, the set of possible values for S remains Qi(S).
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Proof. The proof is straightforward: Since no critical price level with respect to the

bundle S is presented to Bidder i, then the data accumulated throughout the auction

is completely independent of the value vi(S). Since the demands of the other bidders

are also unchanged, and these demands are the only data that is available to the

auctioneer, the auctioneer will not be able to differentiate between different values of

vi(S). Therefore, no value of vi(S) can be ruled out.

B Item-Price Ascending Auctions

Example 1. This example shows that a single item-price auction can elicit an expo-

nential amount of information. Consider two bidders in a combinatorial auction with

preferences of the following type: v(S) = 1 for every bundle S with more than m
2

items,

v(S) = 0 if |S| < m
2

and every S such that |S| = m
2

has an unknown value of either

0 or 1. As proved by Nisan and Segal (2003), for determining the efficient allocation

in this environment, the bidders may be required to communicate an amount of infor-

mation which is exponentially larger than the number of items. However, using small

enough increments, it is easy to determine the values of all the bundles of size m
2

by

an ascending auction.7 This information clearly suffices for determining the optimal

allocation.

Definition 6. (Kelso and Crawford (1982)) A valuation v is said to satisfy the sub-

stitutes (or gross-substitutes) property if for every pair of item-price vectors −→q ≥ −→p
(coordinatewise comparison), if S = {j ∈ M |pj = qj} and A maximizes the bidder’s

utility under the price vector −→p , then there exists a bundle B that maximizes the

bidder’s utility under the price vector −→q such that S ∩ A ⊆ B.

7This can be done by enumerating on all the different bundles of size m
2 , and for each bundle S

set the prices of the items in S to some value λ and set the prices of the items not in S to λ + ε
for sufficiently small ε. Clearly, the bundle S will be demanded if and only if vi(S) = 1. Using
exponentially small increments, we can construct such vectors of prices during a single ascending
path of prices.
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Definition 7. (k-trajectory ascending auctions) Consider an auction A, and

denote the set of all the price vectors presented to bidder i in A by P i.
8 We say that

A is a k-trajectory ascending auction if for every bidder i, the set Pi can be divided

into k ascending trajectories of prices Pi(1), ...,Pi(k). Formally, ∪k
j=1Pi(j) = P i and

for every j ∈ {1, .., k}, and for every two price vectors p, q ∈ Pi(j) such that q was

presented to bidder i at a later stage in A than p, and for every bundle S ⊆ M , we

have that q(S) ≥ p(S).

Proof of Theorem 1a:

Proof. Consider a single agent whose valuation has the following properties: for every

bundle S such that |S| > m
2

we have v(S) = 2, and for every |S| ≤ m
2

we have v(S) = 0,

except for a single unknown bundle T of size m
2

that either has a value of 1 − δ (for

some small δ > 0) or 0. We first show that finding the hidden bundle T requires an

exponential number of ascending item-price trajectories, even if the auctioneer knows

these properties of the valuations.

Recall that under a “critical” price level with respect to the bundle S, the player

demands S for some realization of his valuation (see Definition 5 in Appendix A). We

first prove the following claim:

Claim 2. In an ascending auction, if the bidder is presented with a critical price vector

for some bundle S of size m
2
, then no critical price vector will be published at later

stages of the ascending auction with respect to any other m
2
-sized bundle.

Proof. Let −→p be a critical price vector presented to the bidder with respect to some

bundle S, |S| = m
2
. Thus, for some possible value of v(S) and for any item x ∈ M \S,

the bidder (weakly) prefers the bundle S over the bundle {S∪x}, i.e., v(S∪x)−p(S∪
x) ≤ v(S) − p(S). Since the prices are linear, and since v(S) is always smaller than

1, it follows that: px ≥ v(S ∪ x) − v(S) > 2 − v(S) > 1. Thus, the price of any item

8Recall that each price vector p specifies a price p(S) for every bundle S ⊆ M .
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in M \ S is strictly greater than 1. Since the prices are ascending, it follows that the

bidder will not demand any bundle of size m
2

containing an item from M \ S at later

stages of the auction. (Clearly, the only bundle of size m
2

that does not contain any

item from M \ S is S.)

Due to Claim 2, an ascending path of prices can only contain critical price levels

with respect to one of the m
2
-sized bundles. Therefore, this ascending trajectory will be

independent of the values of all the other m
2
-sized bundles, and no new information will

be elicited on them (this holds since the valuations are informationally independent –

see Proposition 1). It follows that in each ascending trajectory, the auctioneer has to

arbitrarily decide which m
2
-sized bundle will be checked. An adversary (or “nature”)

may choose a valuation such that the last (or before last) bundle to be checked is the

bundle T . Since the number of m
2
-item bundles is exponential in m,9 an exponential

number of ascending trajectories is required for finding the hidden bundle.

Now, consider a second bidder that has a value of 2 for every bundle of size m
2

or more. The optimal allocation will clearly allocate the bundle T to Bidder 1, and

the other m
2

items to the second bidder. Finding the efficient allocation for these two

bidders is equivalent to finding the bundle T . The theorem follows.

Proof of Theorem 1b:

Proof. Consider n bidders and n2 items for sale, and assume that n is prime.10 We

construct a total of n2 distinct bundles with the following properties: for each bidder

i (1 ≤ i ≤ n), we define a partition Si = (Si
1, ..., S

i
n) of the n2 items to n bundles, such

that any two bundles from different partitions intersect (i.e., for every two bidders

i 6= j, and every k, l we have Si
k ∩ Sj

l 6= ∅). We call this combinatorial structure

9According to Stirling’s formula, the number of distinct bundles of size m
2 , out of m distinct items,

is approximately
√

2
πm · 2m.

10Due to the celebrated Bertrand Conjecture from 1845 (proved by Chebyshev in 1850), for every
natural number n there exists at least one prime number between n and 2n. Therefore, we can assume
that n is prime, where the number of items is at most twice the original number. This will result in
an additional factor of 2 in our approximation result.
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mutually-intersecting partitions. In Appendix D, we show an explicit construction

of mutually-intersecting partitions using the properties of linear functions over finite

fields. The rest of the proof is independent of the specific construction.

We now build a set of valuations for the bidders, and prove that they are hard to

elicit by item-price ascending auctions. Each bidder i will have a value of 2 for every

bundle that contains a union of two bundles from different partitions, and an unknown

value of either 0 or 1− δ (for some small δ > 0) for bundles that contain only a single

bundle from a partition (henceforth, the “low-valued” bundles). More formally, each

bidder will have the following valuation (the value of any other bundle is the maximal

value of a bundle that it contains):

• A value of 2 for the bundle Sj′
k ∪ Sj

l , for every k, l and every j′ 6= j.

• A value of either 0 or 1− δ (unknown to the seller) for the bundle Sj
k, for every

j, k.

Note that at most one bidder can gain a value of 2, since every two 2-valued bun-

dles contain bundles from different partitions and thus must intersect. Therefore, for

achieving more than a welfare of 2, we must allocate low-valued bundles. However, as

the following claim shows, the demand of a bidder during a single ascending auction

can only reveal information about his values for bundles from a single partition.

Claim 3. If a bidder is presented with a critical price vector with respect to a bundle

from one partition, no critical price levels will be presented to this bidder with respect

to bundles from other partitions at later stages of the ascending auction.

Proof. Let p be a critical price level for Bidder i with respect to his low-valued bundle

Sj
k. Then, for every bundle Sl

k from a different partition (i.e., l 6= k), we have:

v(Sj
k)− p(Sj

k) ≥ v(Sj
k ∪ Sl

k)− p(Sj
k ∪ Sl

k)
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Since the prices are linear, it follows that:

p(Sl
k) ≥ p(Sj

k ∪ Sl
k)− p(Sj

k) ≥ v(Sj
k ∪ Sl

k)− v(Sj
k) > 1

where the final inequality holds since v(Sj
k) < 1. Hence, the bundle Sl

k will not be

demanded before the auction concludes.

It follows from the claim above that every ascending trajectory of prices will be

independent of the values of every bidder to bundles from all the partitions, except at

most one partition. Hence, for each bidder, the auctioneer will gain information about

at most one partition of the n partitions. Therefore, for every ascending auction, there

must exist a partition j (i.e., Sj
1, ..., S

j
n) for which at most one bidder revealed some

information. An adversary (“nature”) can set the values of the bundles in all the other

partitions such that any way of allocating them will result in a total value of at most

2. In addition, the total value of the bidders to bundles in partition j may be arbitrary

close to n (that is, n−nδ) – each bidder will have a value of 1−δ for one distinct bundle

from this partition. The auctioneer does not have any information on the values that

the bidders (except, maybe, one) have for bundles in this partition, and therefore the

auctioneer will not be able to correctly match the bundles in this partition to the

bidders; The auctioneer can only guarantee a value of 2 by allocating all items to a

single bidder, as opposed to the optimal welfare that can be arbitrarily close to n (and

here, n =
√

m). The theorem follows (as mentioned, we lose an additional factor of 2

since we assumed that n is prime).

Proof of Theorem 1c:

Proof. Let w be the valuation that aggregates the preferences of the n original players.

Since all the original valuations hold the substitutes property, then their aggregation,

w, also has the substitutes property, (e.g., Lehmann et al. (2006)). Substitutes valua-

tions are, in particular, sub-additive – that is, for every two bundles S, T we have that
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w(S)+w(T ) ≥ w(S ∪T ). Due to the assumption that the w is not additive, there are

two bundles S and T for which the inequality is strict,

w(S) + w(T ) > w(S ∪ T ) (B.1)

Substitute valuations are also submodular, and thus exhibit diminishing marginal

valuations (see, e.g., Lehmann et al. (2006)). Therefore, the marginal contribution of

M \ (S ∪ T ) in Inequality B.1 is greater for T than for S ∪ T , thus,

w(S) + w(M \ S) > w(M) (B.2)

Denote ε = w(S)+w(M \S)−w(M). Now, consider the “dual” valuation to w denoted

by w, i.e., for every bundle X, w(X) = w(M)−w(M \X). The dual valuation specifies

the contribution of the bundle X to the welfare of the n players, given that they already

hold the other items. Clearly, if an additional player has a value for S that exceeds

w(S), allocating this bundle to her will increase the total welfare. Using Inequality

B.2, we thus have that the bundles S and M \ S are complements with respect to w

(i.e., the value of their union is smaller than the sum of the separate values),

w(S) + w(M \ S) (B.3)

= w(M)− w(M \ S) + w(M)− w(S) (B.4)

= w(M)− (w(M \ S) + w(S)− w(M)) (B.5)

= w(M)− ε (B.6)

We define an additional bidder k with the valuation vk(·) for which vk(M) = w(M)

(which also equals w(M)), and the values vk(S) and vk(M \ S) are unknown to the

auctioneer and may take the following values: vk(S) ∈ { w(S), w(S)+ ε
6
, w(S)+ ε

3
}

and

vk(M \ S) ∈ { w(M \ S), w(M \ S) + ε
6
, w(M \ S) + ε

3
}.
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The values of all the other bundles is the maximal value of a bundle, from the

above bundles, that they contain.

An efficient auction clearly has to determine which of the bundles S and M \ S

adds more value for the new bidder with respect to w. We will show that an ascending

item-price auction will not be able to find this bundle using the following claim. (The

concept of critical price levels is defined in Definition 5 in Appendix A.)

Claim 4. If a critical price level is presented to player k with respect to the bundle

S, no critical price levels will be presented with respect to the bundle M \ S at later

stages of the ascending auction.

Proof. Let p be a critical price level with respect to the bundle S. Then for some

value of vk(S) the player will prefer this bundle to the whole bundle: vk(S)− p(S) ≥
vk(M)− p(M). Due to the linearity of the prices and the definition of vk(·) it follows

that:

p(M \ S) ≥ vk(M)− vk(S) ≥ w(M)− w(S)− ε

3
(B.7)

> w(M \ S) + ε− ε

3
> vk(M \ S) (B.8)

Where Inequality B.8 follows from Equation B.6. The price of the bundle M \ S is

greater than all its possible values, and this bundle will not be demanded at future

stages since the prices are ascending.

Similarly, we can also show that if a critical price is presented with respect to

M \S, then all future price levels will be independent of the value of S. Therefore, the

auctioneer will be able to elicit information only on one of the bundles S and M \ S,

and the optimal allocation will remain unknown.
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C Anonymous Ascending Auctions

Proof of Theorem 2a:

Proof. Consider n bidders and n2 items, and assume that n is prime.11 Consider n2

distinct bundles defined by mutually-intersecting partitions (see Theorem 1b), that is,

for each bidder, we define a partition Si = (Si
1, ..., S

i
n) of the n2 items to n bundles, such

that any two bundles from different partitions intersect. (As mentioned, an explicit

construction is given in Appendix D.)

Using these n2 bundles we define the following distribution over the players’ pref-

erences. The preferences are drawn uniformly at random from the following class of

valuations with the following properties:

• Each bidder i has a value 2 for every bundle Si
j in his partition.

• There exists one player k such that all the elements Sk
j in his partition gain the

other players a value of 1− ε for some small ε.

• All the players i 6= k gain a zero value from the bundles in player i’s partition,

i.e., vi(S
k
j ) = 0 for every j.

Using these n2 bundles we construct the following valuations. We will define the

values that the bidders have for each one of these n2 bundles, and again, the value

of any other bundle is the maximal value of a bundle that it contains. A bidder i

has a value of 2 for any bundle Si
j in his partition (i.e., the i’th partition). For all

the bundles in the other partitions, he has a value of either 0 or of 1 − δ (for some

small δ > 0), and these values are unknown to the auctioneer. Since every pair of

bundles from different partitions intersect, at most one bidder can receive a bundle

with a value of 2. Nonetheless, for some realizations of the bidders’ preferences, we

11We can assume this and lose a factor of two in the approximation ratio. See the proof of Theorem
1b.
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may allocate the bundles of a particular partition, one bundle per each bidder, such

that one bidder gains a value of 2 and all the others receive a value of 1− δ.

Consider the valuations described above. In every anonymous ascending auction,

a bidder will not demand one of his low-valued bundle as long as the price of at least

one of his high-valued bundles is below 1 (which gains him a utility greater than 1

for this bundle). Therefore, for eliciting any information about low-valued bundles,

the auctioneer should first arbitrarily choose a bidder (w.l.o.g., Bidder 1) and raise

the prices of all the bundles S1
1 , ..., S

1
n to be greater than 1. Since the prices cannot

decrease, no critical price level (see Definition 5) will be presented with respect to any

of these bundles at later stages of the auction for any bidder. Since the valuations are

informationally independent, no information at all will be gained by the auctioneer

on the values of these bundles (see Definition 4 and Proposition 1). It might happen

that the low values of all the bidders for the bundles not in Bidder 1’s partition are

zero (i.e., vi(S
k
j ) = 0 for every bidder i and any partition k 6= 1 and every bundle j

in it). However, allocating each bidder a different bundle from Bidder 1’s partition,

might achieve a welfare of n + 1− (n− 1)δ (Bidder 1’s valuation is 2, and 1− δ for all

other bidders); The auctioneer has no information on the values that the other bidders

have for these bundles. Therefore, for every decision the auctioneer makes about the

allocation, an adversary (“nature”) may choose a profile of valuations for which no

more than a welfare of 2 is achieved (2 for Bidder 1’s high-valued bundle, 0 for all

other bidders). We conclude that no anonymous bundle-price ascending auction can

guarantee a welfare greater than 2 for this class, where the optimal welfare can be

arbitrarily close to n + 1. The theorem follows.

D Constructing Mutually-Intersecting Partitions

We now present an explicit construction for the combinatorial structure used in The-

orem 1b.We also use this combinatorial structure when we prove the inefficiency of

anonymous bundle-price ascending auctions in Theorem 2a. We assume that there
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Figure 3: Mutually-intersecting partitions for 3 bidders and 9 items. Each large square
defines a partition of the items (small squares with the same color in the same large square
form a bundle). Indeed, every two bundles from different partitions intersect. The partition
are defined by parallel linear functions over the relevant finite field.

are n bidders and n2 items (n is prime). For every bidder i, we define a partition

Si = (Si
1, ..., S

i
n) of the n2 items to n bundles of size n, such that any two bundles from

different partitions intersect (i.e., Si
j ∩ Sk

l 6= ∅ for every i 6= k and every l, j). Figure

3 describes such a construction for 3 bidders and 9 items.

We use the properties of linear functions over finite fields (for that, we denote the

bidders by 0, ..., n− 1):

Recall that Zn = {0, ..., n− 1} is a field if (and only if) n is prime. Denote the n2

items for sale by pairs of numbers in Zn. Each linear function ax + b over the finite

field Zn denotes an n-item bundle (a total of n2 bundles where a, b ∈ Zn). The items in

each bundle are the pairs (x, ax+ b) for every x ∈ Zn. The bundles assigned to Bidder

i are the n bundles ix + b where b ∈ Zn (that is, all the parallel linear functions with

a slope i). We need to show that the bundles assigned to Bidder i form a partition,

and indeed the functions ix + b1 and ix + b2 cannot intersect when b1 6= b2. It is also

easy to see that every two bundles that are assigned to different bidders do intersect:

consider the functions ix + b1 and jx + b2. Since zn is a field, clearly an x exist such

that x(j − i) = (b1 − b2) when j 6= i for any b1, b2. The jth bundle of Bidder i is

therefore, Si
j = {(0, i · 0 + j), ..., (n− 1, i · (n− 1) + j)}.
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