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Abstract
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characterize a new index of riskiness defined on relative returns. Both
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1 Introduction

One of the key determining factors in the formation of investments decisions
is the riskiness of the investments. Hence, measures (indices) of riskiness
are of a great theoretical and practical interest. A measure of riskiness is
essentially a real-valued function defined on random returns of investments.
Examples of such common measures include variance, VaR (Value at Risk)
and semi-variance.

In the present paper we emphasize the idea that investments returns
can be viewed either as absolute or relative, and that this distinction implies
different concepts of risks. Consider, for instance, the investment in a security
s. If the security’s current price is s0 and its random future value is s1, s1−s0
is considered to be the absolute return of s, and s1/s0 to be its relative return.
Absolute returns are additive; if an agent with initial wealth w buys security
s, her wealth will be distributed as w+ s1− s0. By contrast, relative returns
are multiplicative; if the agent invests all her initial wealth w in the security,
her wealth will be distributed as ws1/s0. Functions of returns may induce
different orders on the set of securities once they are applied to absolute
returns or relative returns. For instance, given two securities, it might be
that the expected absolute return of one security is greater but that its
expected relative return is smaller (or vice versa). The same is correct in
relation to variance and many other functions of random variables.

The renewed interest of the economic literature in risks1 focuses on the
riskiness of additive gambles rather than securities. Additive gambles are
basically random variables whose values are interpreted as absolute returns.
If an agent with initial wealth w accepts such an additive gamble g, her
wealth will be distributed as w + g. Hence, the absolute return of a security
is by definition an additive gamble. In their paper, Aumann and Serrano
(2008) characterize an index of riskiness of such additive gambles by a “dual”
relationship between risk and risk aversion. According to their approach, if
“riskiness” refers to the same concept of risk that risk averters dislike, it is
natural to expect that agents who are less averse to risk will be willing to
accept riskier gambles.2 This principle, together with the homogeneity of
riskiness, yields a unique index of riskiness denoted by A∗. This index was

1This literature includes Aumann and Serrano (2008), Foster and Hart (2009), Foster
and Hart (2013), and Hart (2011).

2Risk aversion here relates to “wealth uniform” risk aversion; see Section 2.1.
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first presented by Palacios-Huerta et al. (2004).3

In this paper we propose two indices of riskiness of securities: A, an index
of absolute riskiness, and R, an index of relative riskiness.4 The A index is
simply the index A∗ applied to absolute returns of securities. On the other
hand, R is a new index developed in the present paper. The A and R indices
are both functions of random returns but while A is a function of absolute
returns, R is a function of relative returns. Like A, R is also characterized
by the duality principle, but while the riskiness as measured by A is dual to
absolute risk aversion, the riskiness measured by R is dual to relative risk
aversion. Needless to say, A and R are not ordinally equivalent; i.e., one
security might be absolutely more risky but relatively less risky.

Obviously, one could think of alternative definitions for an index of rel-
ative riskiness. In fact, Aumann and Serrano (2008) themselves propose to
measure the riskiness of a multiplicative gamble as the absolute riskiness of
its net return.5 Applying this index of multiplicative gambles to (net) rela-
tive returns of securities will yield an alternative index of relative riskiness.
However, some characteristics that are unique to R make it the best can-
didate to measure the relative riskiness. Moreover, these characteristics are
equivalent to those of A but are recast in relative terms. Some of the main
characteristics of absolute and relative riskiness measured by A and R are:

1. (i) Agents whose absolute risk aversion is uniformly6 lower are willing
to accept securities that are absolutely riskier.

(ii) Agents whose relative risk aversion is uniformly lower are willing
to accept securities that are relatively riskier.

2. (i) The higher the absolute riskiness of a security is, the higher the
probability that a sum of such i.i.d. absolute returns will go below
a threshold.

(ii) The higher the relative riskiness of a security is, the higher the

3In the insurance risk literature, the reciprocal of A∗ is knwon as the “adjustment
coefficient” ; see Meilijson (2009).

4We assume that distributions are known. A generalization to sets of distributions and
non-expected-utility models can be done using the approach of Michaeli (2012).

5A multiplicative gamble is a random variable whose values are interpreted as relative
returns. If r is a multiplicative gamble, investing w in r will yield wr at the end of the
period. Aumann and Serrano define the riskiness of r as the absolute riskiness of r − 1.

6“Uniformly” is used here in the same sense as in Section 2.1.
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probability that a multiplication of such i.i.d. relative returns will
go below a threshold.

3. (i) Any decision maker with a “standard”7 utility who rejects the
absolute return of a security at any level of wealth will also reject
the absolute return of an absolutely riskier security at any level
of wealth.

(ii) Any decision maker with a “standard” utility who rejects the
relative return of a security at any level of wealth will also reject
the relative return of a relatively riskier security at any level of
wealth.

The first item is the duality axiom of Aumann and Serrano (2008), the second
item appears in Melijson (2010), and the third appears in Hart (2011). Our
index of relative riskiness has the advantage of being the only index of relative
returns that satisfies these properties in relation to relative returns.

The paper is organized as follows. Section 2 is devoted to the basic
axiomatic definitions of the indices. The A index is characterized by two
axioms, namely, absolute duality and absolute scaling, which are a simple
translation of the Aumann–Serrano axioms from the environment of gambles
to the environment of securities. However, the axioms that characterize the R
index, namely, relative duality and relative scaling, are new. Section 3 relates
the indices to Arrow–Pratt risk aversion. Section 4 sets forth some desirable
properties of the indices. Section 5 proposes two alternative characterizations
(other than “duality”) for the two indices and Section 6 concludes. Proofs
are relegated to the Appendix.

2 The Indices

In this section we give an axiomatic characterization of the indices of absolute
and relative riskiness of securities. The index of absolute riskiness is simply
the application of the index A∗, originally defined on additive gambles, to
absolute returns of securities. However, the index of relative riskiness is a
new index that induces a different order on the set of securities.

7Here “standard” refers to the definition of Hart (2011); see Section 5.2.
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2.1 Axiomatic Characterization

Throughout this paper, a utility function is a von Neumann–Morgenstern
utility function for money; it is strictly monotonic, strictly concave, and
twice continuously differentiable. A decision maker (agent) is characterized
by a utility function.

We consider a two-period model in which investments are made at period
zero and are liquidated at period one. A security s is characterized by a pair
(s0, s1), where s0 is a real number representing the value (price) of the security
at period zero, and s1 is a random variable with finitely many positive values
representing the value of the security at period one. If an agent with initial
wealth w buys one unit of s, her wealth will be distributed as w + s1 − s0
and if she invests w in s, her wealth will be distributed as ws1/s0. Therefore
s1 − s0 is the absolute return of s and s1/s0 is its relative return. Following
Aumann and Serrano (2008) we assume that the absolute return of a security
takes negative values with a positive probability and that its expectation is
positive. Similarly, we assume that the relative return of a security takes
values less than one with a positive probability and that its geometric mean
is greater than one.8

We say that an agent with utility u and initial wealth w A-accepts secu-
rity s if she benefits from buying one unit of it, i.e., if Eu(w+s1−s0) > u(w).
Otherwise she A-rejects it. Similarly, we say that the agent with initial
wealth w > 0 R-accepts s if she benefits from investing w in s, i.e., if
Eu(ws1/s0) > u(w); otherwise she R-rejects it.9

We use the concepts of A-acceptance and R-acceptance to define two
orders on agents representing their willingness to be exposed to absolute and
relative risks respectively.

Definition 1.

8If the absolute return of a security is always positive or if the relative return of a
security is always greater than one, its riskiness (absolute or relative, respectively) can be
considered to be zero. On the other hand, if the mean of the absolute return of a security
is negative then accepting securities with such i.i.d. absolute returns repeatedly will lead
to bankruptcy with probability one; therefore its absolute riskiness can be considered to
be infinity. For similar reasons, if the geometric mean of the relative return of a security
is less than one, its relative riskiness can be considered to be infinity.

9The definitions of R-acceptance and R-rejection assume the investment of all initial
wealth. This assumption is mostly reasonable for portfolios (rather than “securities”). We
dispense with this assumption latter; see Section 2.3.
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1. Agent i is uniformly no less absolute-risk averse than agent j, written
i �A j, if whenever i A-accepts a security at some wealth, j A-accepts
that security at any wealth.

2. Agent i is uniformly no less relative-risk averse than agent j, written
i �R j, if whenever i R-accepts a security at some (positive) wealth, j
R-accepts that security at any (positive) wealth.

The first part of Definition 1 is taken from Aumann and Serrano (2008)
and the second part is our extension.

We call agent i uniformly more absolute-risk averse than j, denoted by
i �A j, if i �A j but not j �A i. Similarly, we call agent i uniformly more
relative-risk averse than j, denoted by i �R j, if i �R j but not j �R i. Note
that both orders are partial orders.

Define an index as a positive real-valued function of securities. Given an
index Q, security s is riskier than security r (according to Q) if Q(s) > Q(r).
If the value of the index depends only on absolute returns of securities, we
call it an index of absolute returns; and if its value depends only on relative
returns, we call it an index of relative returns.

We consider two axioms. The first part of each axiom is a simple trans-
lation of the corresponding Aumann-Serrano axiom, namely, from a gambles
environment to a securities environment. Together, they characterize the
index of absolute riskiness. By contrast, the second parts of the two axioms,
which relate to relative returns, together characterizes a new index of relative
riskiness.

Absolute Duality. If i �A j, i A-accepts s at w, and if Q(s) > Q(r),
then j A-accepts r at w.
Relative Duality. If i �R j, i R-accepts s at w, and if Q(s) > Q(r), then
j R-accepts r at w.

Duality asserts that if the more risk averse of two agents accepts the riskier of
two assets, then a fortiori the less risk averse agent accepts the less risky asset.

Absolute Scaling. Q(ts) = tQ(s) for all positive numbers t.
Relative Scaling. Q(st) = tQ(s) for all positive numbers t.

The two versions of the scaling axiom, absolute and relative, embody the
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cardinal nature of riskiness; accepting two securities with the same returns
doubles the risk. “Accepting” is interpreted as either A-accepting or R-
accepting. More specifically, if the absolute return of a security is multiplied
by two, then its absolute return is multiplied by two. Similarly, if the rela-
tive return of a security is raised to the power of two, its relative riskiness is
multiplied by two.10

We define two indices: one is an index of absolute returns, A, and one is
an index of relative returns, R. Given a security s, A(s) and R(s) are defined
implicitly as follows:

Ee−(s1−s0)/A(s) = 1. (1)

E

(
s1
s0

)−1/R(s)

= 1. (2)

While A is a translation of the index A∗ to the securities environment, R
is an altogether new index.11 Note that Aumann and Serrano (2008) denote
their index by “R.” But they do not distinguish between absolute and relative
returns. We change their notation in accordance with the terms absolute and
relative.

The following theorem asserts that the indices just defined satisfy the two
axioms.

Theorem 1.

1. For each security s, there is a unique positive number A that solves for
(1). A satisfies absolute duality and absolute scaling, and any index of
absolute returns satisfying these two axioms is a positive multiple of A.

2. For each security s, there is a unique positive number R that solves for
(2). R satisfies relative duality and relative scaling, and any index of
relative returns satisfying these two axioms is a positive multiple of R.

10One can think of it as an investment in a security for two periods where the returns
of the security are equal at both periods.

11A recent paper of Li (2013) proposes an index of riskiness of multiplicative gambles
which is based on a similar principle.

7



Aumann and Serrano (2008) note in relation to A that duality and scaling
are both essential: omitting either one of them results in admitting indices
that are not positive multiples of A. But of the two properties, duality is
the more central: together with certain weak conditions of continuity and
monotonicity—but not scaling—it already implies that the index is ordinally
equivalent to A. The same statement is true for our new index R.

It follows from (1) and (2) that

R(s) = A(log s), (3)

where log s is the security whose prices are: (log s)0 = log s0 and (log s)1 =
log s1. Equation (3) does not imply that the orders induced by A and R are
ordinally equivalent. In fact, there are many pairs of securities, s and r, for
which A(s) > A(r) but R(s) < R(r).

The use of log return is quite commonly used in the financial literature
to compare the riskiness of investments. In general, the main reason for
using log returns instead of returns is to account for continuous compounding
of interest or continuous growth of value. The present paper strengthens
this idea by suggesting an axiomatic justification to use log returns when
comparing the relative risks of different investments.

2.2 The Index A∗

Unlike the index A, the index A∗ which characterized axiomatically by Au-
mann and Serrano (2008) is defined on additive gambles. An additive gamble
is a random variable with real values—understood as dollar amounts—some
of which are negative, and it has a positive expectation. By contrast, a multi-
plicative gamble is a random variable whose values are understood as relative
returns, with an expectation greater than one and some values that are less
than one. To make the distinction clearer, let us consider an agent with
wealth w; if she accepts an additive gamble g, her wealth will be distributed
as w + g. By contrast, if the agent invests w in a multiplicative gamble h,
her wealth will be distributed as wh. Note that by definition, absolute re-
turns of securities are additive gambles and relative returns of securities are
multiplicative gambles.

Aumann and Serrano (2008) characterize their index by the duality and
scaling (homogeneity) axioms. Our axioms of absolute duality and abso-
lute scaling are a simple translation of their axioms to the environment of
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securities. To see the relation between A and the index A∗, note that the
riskiness of an additive gamble g, denoted by A∗(g), is defined implicitly by
the equation

Ee−g/A
∗(g) = 1. (4)

Obviously, it follows from (1) and (4) that for any security s,

A(s) ≡ A∗(s1 − s0).

Although Aumann and Serrano focus on additive gambles, at the end of
their paper (Section 5.K) they address the problem of multiplicative gam-
bles. Since they do not distinguish between absolute and relative riskiness,
they apply the same definition to measure the riskiness of both additive and
multiplicative gambles. Formally, the riskiness of a multiplicative gamble h
is defined as

R∗(h) ≡ A∗(h− 1). (5)

In our terms, the Aumann–Serrano riskiness of a multiplicative gamble is
defined as the absolute riskiness of its net return. In principle, R∗ can be
applied to relative returns of securities, just as we apply A∗ to absolute
returns of securities, but such an application would induce a third order of
riskiness on the set of securities which is different from the orders induced
by A and R. In fact, it can be shown that for any security s,

R∗(s1/s0) = A∗(s1 − s0)/s0.

Conceptually, then, R∗ measures the absolute riskiness of a security per dol-
lar.

2.3 Rα-acceptance

The axiom of relative duality that characterizes R uses the concept of R-
acceptance. Recall that an agent with utility u and wealth w R-accepts a
security s if and only if Eu(ws1/s0) > u(w). This definition assumes that
the invested capital is w, i.e., all the initial wealth. However, one could think
of an alternative definition that considers an investment of only a fraction
α of the wealth in a security. If the relative duality axiom referred to such
a new definition of R-acceptance, it would characterize an index of relative
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riskiness different from R. To analyze it formally, note that if the initial
wealth of an agent is w, investing αw in security s is equivalent to investing
w in the security s(α) whose values at periods zero and one are defined as
follows: s(α)0 = s0 and s(α)1 = s0 + α(s1 − s0). Investing either αw in s or
w in s(α) causes the wealth to be distributed as w + αw(s1/s0 − 1). Given
α, 0 < α < 1, we say that an agent with utility u and wealth w Rα-accepts
security s if she R-accepts s(α), i.e., if Eu(ws(α)1/s(α)0) > u(w). Otherwise
she Rα-rejects it. Obviously, R-acceptance is a special case of Rα-acceptance
in which α = 1. If we were to change the relative duality axiom to refer
to Rα-acceptance rather than to R-acceptance, we would get another index
of relative riskiness, Rα, satisfying Rα(s) = R(s(α)) for any security s and
0 < α < 1.

While in general Rα and R are not ordinally equivalent, interestingly,
when α goes to zero, the order induced by Rα becomes closer to the order
induced by R∗. Formally,

lim
α→0

R(s(α))

R(r(α))
=
R∗(s)

R∗(r)
=
A(s)/s0
A(r)/r0

. (6)

This implies that given two securities, s and r, if the absolute riskiness of
s per dollar is higher than the absolute riskiness of r per dollar, then for
α small enough, s(α) is relatively riskier than r(α). Put differently, when
the capital at stake is very small, comparing either the relative riskiness of
two investments or their absolute riskiness per dollar yield the same order of
riskiness.12 The proof of this statement is relegated to the Appendix.

3 Relation with Arrow-Pratt

3.1 Risk Aversion and Uniform Risk Aversion

The concepts of uniform absolute and relative risk aversion that underlie our
treatment can be defined in terms of the well-known Arrow–Pratt coefficients
of absolute and relative risk aversion.13 Arrow (1965) and Pratt (1964) define

12It follows from the absolute scaling property that A(s(α)) = αA(s). Hence, A(s) >
A(r) if and only if A(s(α)) > A(r(α)). Moreover, the right-hand side of Equation (6)

equals A(s(α))/s0
A(r(α))/r0

.
13Here, we draw on Aumann and Serrano’s (2008) analysis of absolute riskiness and

absolute risk aversion.
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the coefficient of Absolute Risk Aversion (ARA) of an agent i with utility ui
and wealth w as

ρi(w) ≡ ρ(w, ui) ≡ −u′′i (w)/u′i(w),

and the coefficient of Relative Risk Aversion (RRA) as

%i(w) ≡ %(w, ui) ≡ wρ(w, ui).

The following lemma shows the relation between uniform risk aversion
and Arrow–Pratt risk aversion.

Lemma 3.1.

1. Agent i is no less uniformly absolute-risk averse than j if and only if
ρi(wi) ≥ ρj(wj) for all wi and wj.

2. Agent i is no less uniformly relative-risk averse than j if and only if
%i(wi) ≥ %j(wj) for all wi and wj.

As Aumann and Serrano (2008) state, the Arrow–Pratt concept of abso-
lute and relative risk aversion is a “local” concept in that it concerns i’s atti-
tude toward infinitesimally small risky assets at a specified wealth only.14 In
contrast, the concepts of uniform absolute-risk aversion and uniform relative-
risk aversion are “global” in two senses: (1) they apply to risky assets of an
arbitrary, finite size, which (2) may be taken at any wealth. However, these
are only partial orders, whereas Arrow and Pratt define a numerical index
(and hence a total order).

3.2 CARA and CRRA

An agent i is said to have Constant Absolute Risk Aversion (CARA) if her
ARA is a constant α that does not depend on her wealth. In that case, i is
called a CARA agent and her utility u a CARA utility, both with parameter
α. There is an essentially unique CARA utility with parameter α, given by
u(w) = −e−αw. An agent i is said to have Constant Relative Risk Aversion
(CRRA) if the value of %i(w) is constant for all w. CRRA expresses the
idea that wealthier people are less risk averse. Here, wealth is assumed to be

14Schreiber (2012) takes the Arrow-Pratt approach by defining “local risks” based on
the indices of riskiness described in the present paper.
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positive. There is an essentially unique15 CRRA utility with parameter α,
given by

uα(x) =

{
(x1−α−1)

1−α if α 6= 1

log(x) if α = 1.

Though defined in terms of a local concept of risk aversion, CARA and
CRRA can be defined in global terms as follows. An agent i has CARA if
and only if, for any security s and any two wealth levels, i either A-accepts
s at both levels or A-rejects s at both levels. Similarly, an agent i has
CRRA if and only if, for any security s and any two wealth levels, i either
R-accepts s at both levels or R-rejects s at both levels. This independence
of wealth levels enables us to use the parameter of the CARA agents for
ranking absolute riskiness of securities and to use the parameter of CRRA
agents for ranking the relative riskiness of securities. Moreover, for each
security s, there is precisely one “cutoff” value of the parameter, such that s
is A-accepted by CARA agents with a smaller parameter and A-rejected by
CARA agents with a larger parameter. Similarly, there is another “cutoff”
value of the parameter, such that s is R-accepted by CRRA agents with a
smaller parameter and R-rejected by CRRA agents with a larger parameter.
These cutoff values are the reciprocal of the absolute riskiness and the relative
riskiness (minus one). The following lemma formalizes this idea.

Lemma 3.2.

1. The absolute riskiness A(s) of a security s is the reciprocal of the num-
ber α such that any CARA agent with a parameter lower than α will
A-accept the security and any CARA agent with a parameter (weakly)
greater than α will A-reject the security.

2. The relative riskiness R(s) of a security s is the reciprocal of the number
γ − 1 such that any CRRA agent with a parameter lower than γ will
R-accept the security and any CRRA agent with a parameter (weakly)
greater than γ will R-reject the security.

It follows from the lemma that for CARA agents, absolute riskiness is
the only criterion for A-accepting or A-rejecting a security; and for CRRA
agents, relative riskiness is the only criterion for R-accepting or R-rejecting

15Up to additive and positive multiplicative constants.
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a security. For a more general family of utilities, there is no simple criterion
based on A and R for accepting or rejecting securities. However, as the
following lemma asserts, the riskier the security is, the less likely it is that
agents will accept it.

Lemma 3.3.

1. If ρi(x) < 1/A(s) for all x between w+min(s1−s0) and w+max(s1−s0),
then i A-accepts s at w; and
if ρi(x) > 1/A(s) for all such x, then i A-rejects s at w.

2. If %i(x) < 1/R(s)+1 for all x between w·min(s1/s0) and w·max(s1/s0),
then i R-accepts r at w; and
if %i(x) > 1/R(s) + 1 for all such x, then i R-rejects s at w.

To sum up, the higher the absolute riskiness of a security is, the more
likely it is that decision makers will A-reject it; and the higher the relative
riskiness of a security is, the more likely it is that decision makers will R-reject
it.

4 Properties

Some of the properties of this section were studied by Aumann and Serrano
(2008) in relation to the absolute riskiness of additive gambles. Here, we re-
late these properties to absolute and relative riskiness of securities, together
with a few other relevant properties not studied by Aumann and Serrano.

1. Monotonicity with Respect to Stochastic Dominance.
Stochastic dominance is one of the fundamental concepts in the theory

of decision making under risk. As Aumann and Serrano (2008) write, “the
most uncontroversial, widely accepted notions of riskiness are provided by
the concepts of stochastic dominance.” (Hadar and Russell 1969, Hanoch
and Levy 1969, Rothschild and Stiglitz 1970). To explain these notions, let
w̃1 and w̃2 be two discrete random variables representing distributions over
wealth levels. We say that w̃1 First-Order Dominates (FOD) w̃2 if w̃1 ≥ w̃2

for sure and w̃1 > w̃2 with positive probability. We say that w̃1 Second-Order
Dominates (SOD) w̃2 if w̃2 may be obtained from w̃1 by “mean-preserving
spreads,” i.e., by replacing some of w̃1’s values with random variables whose
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mean is that value. We say that w̃1 stochastically dominates w̃2 if there is a
random variable distributed like w̃1 that dominates w̃2 (in the above sense).

Since the definition of stochastic dominance can be applied to both abso-
lute and relative returns, it suggests two orders of stochastic dominance on
securities. More specifically, we say that security s absolutely stochastically
dominates security r if the absolute return of s stochastically dominates the
absolute return of r, i.e., if s1−s0 stochastically dominates r1−r0. Similarly,
we say that security s relatively stochastically dominates security r if s1/s0
stochastically dominates r1/r0.

As the following lemma asserts, A and R are compatible with stochastic
dominance.

Lemma 4.1.

1. If s absolutely stochastically dominates r, then A(r) > A(s).

2. If s relatively stochastically dominates r, then R(r) > R(s).

It is important to note that the two orders of stochastic dominance are
not ordinally equivalent. To see that, let s be a security with s0 = 1
and s1 = [1.2, 0.5; 0.9, 0.5], and let r be a security with r0 = 2 and r1 =
[2.5, 0.5; 1.8, 0.5]. It is easy to see that r1/r0 stochastically dominates s1/s0
but r1 − r0 does not stochastically dominate s1 − s0.16

2. The Risk-Free Alternative.
By definition, A and R depend only on the current and the future prices

of the security. A more general definition of riskiness would take into account
the risk-free alternative available for investors in the economy. Let rf ≥ 1 be
the risk-free (gross) return available for investors, such that investing w in the
risk-free asset yields wrf at the next period. To fit the definitions to the new
situation, we redefine the concepts of A-acceptance and R-acceptance. Since
the present value of r1 is r1/rf , we say that an agent A-accepts a security s
if Eu(w+ st/rf − s0) > u(w) and R-accepts the security if Eu(wst/(s0rf )) >

16Though the two orders are not equivalent, they are not contradictory either. Stochas-
tic dominance is only a partial order since the members of many pairs of securities do not
stochastically dominates each other. A direct implication is that if s absolutely stochasti-
cally dominates r, then r does not relatively stochastically dominate s, and vice versa.
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u(w). Obviously, the concepts A-acceptance and R-acceptance studied in
Section 2.1 are only special cases of the new definitions in which rf = 1.

Indices of riskiness that take into account the risk-free interest rate can
be defined as follows:

Af (s, rf ) ≡ A(srf ), (7)

and

Rf (s, rf ) ≡ R(srf ), (8)

where srf is the security whose values are s
rf
0 = s0 and s

rf
1 = s1/rf .

17 Obvi-
ously, if we substitute the new definitions of A-acceptance and R-acceptance
into the duality axiom, Theorem 1 will be true for Af and Rf instead of A
and R.

Since, for a security s, the values of s1 are assumed to be positive, the
absolute return s1−s0 stochastically dominates s1/rf−s0 and the relative re-
turn s1/s0 stochastically dominates s1/(rfs0). Hence, it follows from Lemma
4.1 that any security becomes riskier when the risk-free interest rate is higher.
Indeed, every agent who A-accepts (R-accepts) a security at a certain risk
free interest rate will A-accept (R-accept) it if the risk-free interest rate is
lower. It is interesting to note that the order induced by Af (Rf ) for two
different rates of rf are not ordinally equivalent. If the risk-free interest rate
increases, it makes any risky asset even riskier—but not at the same rate.

We proceed now to study the properties of A and R; that is, we assume
that rf = 1.

3. Investing Only a Fraction of Wealth.
Recall that s(α) denotes the security whose prices are: s(α)0 = s0 and

s(α)1 = s0+α(s1−s0). Investing w in s(α) is equivalent to investing only wα
in s as in both cases, the wealth at period 1 is distributed as w+αw(s1/s0−1).
The following lemma asserts that if α < 1, the investment of only αw in
security s is less risky than investing w in s.

Lemma 4.2. R(s(α)) < R(s) for 0 < α < 1.

17In order for the right-hand sides of Equations (7) and (8) to be well defined, we have
to assume that the absolute and relative returns of srf satisfy the limitations that we
imposed on returns in Section (2.1).
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Intuitively, investing only a fraction of wealth exposes the investor to
smaller risks.

4. Portfolio Diversification.
The widely accepted idea that diversified portfolios are preferable to non-

diversified portfolios was emphasized in the pioneering work of Markowitz
(1952). In our context, we will say that a measure of riskiness satisfies the
property of “superiority of diversification” if a diversified portfolio consisting
of two securities with different returns is less risky than the riskier security.
An important implication of this property is that a diversified portfolio con-
sisting of securities whose returns are i.i.d. is less risky than each one of the
securities. Indeed, A and R satisfy this property.

Formally, let h and k be two securities and let aα(h, k) be a security whose
absolute return is a weighted average of the absolute returns of h and k, i.e.,
aα(h, k)’s absolute return is α(h1 − h0) + (1− α)(k1 − k0), where 0 < α < 1.
If the absolute returns of h and k are not equal,18 we have

A(aα(h, k)) < max(A(h), A(k)). (9)

Similarly, let rα(h, k) be the security whose absolute return is α(h1/h0) +
(1 − α)(k1/k0), where 0 < α < 1. If their relative returns are not equal, we
have

R(rα(h, k)) < max(R(h), R(k)). (10)

5. Normal and Log-Normal Distributions.
By our earlier definition, the value of a security at period 1 has only

finitely many values and so its distribution cannot be normal or log-normal.
We therefore redefine the price of a security at period 1 as any random
variable for which A and R are well defined.19

Aumann and Serrano (2008) show that if an additive gamble g is nor-
mally distributed with variation σ and expectation µ, then A∗(g) = σ2/(2µ).

18“Not equal” means that at least on one event they take different values; identical
distributions are not necessarily equal.

19The indices A and R are not well defined for every continuous random variable; see
Schulze (2010) who studies for which probability distributions the index A∗ is well defined.
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Hence, if the absolute return of security s is normally distributed with varia-
tion σ and expectation µ, then A(s) = σ2/(2µ). So it follows from Equation
(3) that if s1/s0 has a log-normal distribution with parameters µ and σ, then
R(s) = σ2/2µ, where σ2 is the variance of log s1/s0 and µ is the expectation
of log s1/s0.

6. Translation Invariance
Let x be a positive number. We denote by s+x the security whose prices

are (s + x)0 = s0 + x and (s + x)1 = s1 + x. Similarly, we denote by xs the
security whose prices are (xs)0 = xs0 and (xs)1 = xs1. It is easy to verify
the following observations:

1. A(s+ δ) = A(s) for every δ > 0.

2. R(λs) = R(s) for every λ > 0.

Adding δ to the price of the security does not affect its absolute local riskiness
since the buying price and the selling price offset each other. Multiplying a
security by λ does not affect its relative return and, therefore, does not affect
its relative riskiness.

7. Continuity.
We say that an index of absolute returns Q is continuous if Q(sn)→ Q(s)

whenever the absolute returns of sn are uniformly bounded and converge to
the absolute return of s in probability. Similarly, we say that an index of
relative returns Q is continuous if Q(sn) → Q(s) whenever the relative re-
turns of sn are uniformly bounded and converge to the relative return of s
in probability. By these definitions, the riskiness indices A and R are con-
tinuous. In words, when the returns of two securities are likely to be close,
their riskiness levels are close. The proof for the continuity of A appears in
Aumann and Serrano (2008). Since the log function is continuous, it follows
from (3) that R is also continuous.

8. Diluted Securities.
Let s be a security and let p be a number strictly between zero and one.

Define the “diluted” security sp as the security whose price at period 1, sp1, is
s1 with probability p and s0 with probability 1−p, and whose price at period
zero, sp0 equals s0. Then, A(sp) = A(s) and R(sp) = R(s). Though at first
this may sound counterintuitive, any expected utility maximizer A-accepts sp
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if and only if she A-accepts s, and any expected utility maximizer R-accepts
sp if and only if she R-accepts s.

The proof of the claim in relation to absolute riskiness appears in Aumann
and Serrano (2008), and the claim in relation to relative riskiness follows from
the first claim and Equation (3).

9. Repeated Investments.
Investing repeatedly in a security with i.i.d. returns is just as risky as

investing in the security for only one period. Formally, let s and s′ be two
securities with i.i.d. absolute returns. Then

A(s+ s′) = A(s) = A(s′),

where s+ s′ is the security whose prices at periods zero and one are the sum
of the prices of s and s′ at these periods. Similarly, if the relative returns of
s and s′ are i.i.d., then

R(ss′) = R(s) = R(s′),

where ss′ is the security whose prices at periods zero and one are the multipli-
cation of the prices of s and s′ at these periods. It follows that the riskiness of
the securities do not depend on the investment time horizon, when securities
returns are assumed to be i.i.d. over time. This contrasts with expectation
and variance, which are correlated with the investment time horizon. The
proof of the statement on absolute returns (and some additional results on
dependent investments, which can be easily translated to relative terms) ap-
pears in Aumann and Serrano (2008). The statement on relative returns
follows from the first statement and Equation (3).

5 Alternative Characterizations

In Section 2, adopting the approach of Aumann and Serrano (2008), we char-
acterized the indices of absolute and relative riskiness by duality and scaling.
As we saw there, although A and R are based on two axioms, it is only the
duality axiom that determines the orders of riskiness. In this section we show
that, in addition to duality, there are two alternative characterizations that
induce the same orders of riskiness that are induced by A and R.
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5.1 Probability for Bankruptcy

Meilijson (2009) suggests an interpretation of the index A∗ of riskiness con-
necting the concept of riskiness to the probability of great losses as a result
of investing repeatedly in assets with i.i.d. absolute returns. In this section
we extend his idea to relative returns.

Given a security s, we define the infinite random process sa as follows.
For any t = 1, 2, ..., the t random absolute return of the process, defined as
sat − sat−1 (when sat−1 is given), is identically independently distributed (i.i.d.)
as s1 − s0. It turns out that for two securities s and h, if A(s) > A(h), then
there is a real value B such that the probability that sa will go below x at
some t is greater than the probability that ha will go below x at some t, for
all x < B. Formally,

Theorem 2. A(s) > A(h) if and only if there exists a real number B such
that for all x < B,

P (∃t s.t. hat < x) < P (∃t s.t. sat < x). (11)

Similarly, given a security s, we define the infinite random process sr as
follows. For any t = 1, 2, ..., the t random relative return of the process, de-
fined as srt/s

r
t−1 (when srt−1 is given), is identically independently distributed

(i.i.d.) as s1/s0. Here again, for any two securities s and h, if R(s) > R(h),
then there is a real value B such that the probability that sr will go below x
at some t is greater than the probability that hr will be below x at some t,
for all x < B. Formally,

Theorem 3. R(s) > R(h) if and only if there exists a real number B such
that for all x < B,

P (∃t s.t. hrt < x) < P (∃t s.t. srt < x). (12)

Theorem 2 is proved by Meilijson (2009). Theorem 3 follows from Theo-
rem 2 and Equation (3).

Obviously, these theorems suggest an alternative characterization of the
indices A and R: s is absolutely riskier than h if and only if Equation (11)
holds, and s is relatively riskier than h if and only if Equation (12) holds.
Hence, A and R are the only indices that satisfy Equations (11) and (12)
and the scaling axiom.
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5.2 Wealth Uniform Dominance

Hart (2011) defines an order of riskiness on additive gambles, called wealth
uniform dominance, and shows its equivalency to the order induced by the
Aumann–Serrano index. We take Hart’s approach and define two variants of
his wealth uniform dominance order, except that we refer to securities rather
than gambles, and show their equivalency to the orders induced by A and
R. In his analysis, Hart (2011) relates to a specific set of utilities, U∗, which
he calls “regular utilities.” The properties of utilities in U∗ that are relevant
to our discussion are that (1) their absolute risk aversion decreases (weakly)
with wealth (DARA) and (2) their relative risk aversion increases (weakly)
with wealth (IRRA).

Hart’s wealth uniform dominance order is defined as follows.

A gamble g wealth uniformly dominates a gamble h whenever:

if g is rejected by u at all w > 0

then h is rejected by u at all w > 0,

for every utility u ∈ U∗.

Similarly, we define two orders of wealth-uniform dominance for securities.

Definition 2.

1. A security s absolutely wealth uniformly dominates a security r, denoted
s ≥AW r, whenever:

if s is A-rejected by u at all w > 0

then r is A-rejected by u at all w > 0,

for every utility u ∈ U∗.

2. A security s relatively wealth uniformly dominates a security r, denoted
s ≥RW r, whenever:

if s is R-rejected by u at all w > 0

then r is R-rejected by u at all w > 0,
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for every utility u ∈ U∗.

We have the following theorem.

Theorem 4.

1. For any two securities s and r, s ≥AW r if and only if A(s) ≤ A(r).

2. For any two securities s and r, s ≥RW r if and only if R(s) ≤ R(r).

Obviously, the orders ≥AW and ≥RW can substitute the duality axiom, and,
together with the scaling axiom, they characterize A and R in a unique way.

This approach may seem more intuitive than our first approach: s is
riskier than r if any decision maker who rejects s also rejects r. Rejecting here
is interpreted in the sense of wealth uniformly. However, riskiness according
to this approach is relevant to a limited set of utilities U∗.

6 Conclusions

This paper advances the idea that risks arising from investments have two
aspects, namely, absolute and relative. The paper characterizes indices of
absolute and relative riskiness by the Aumann-Serrano principle of duality
between risk and risk aversion. The index of absolute riskiness is simply
the index A∗ applied to absolute returns, and the index of relative riskiness,
which is a new index, is a function of relative returns. Both indices reflect the
idea that “risk is what risk averters hate” (Machina and Rothschild 2008).

Since the indices differ in their properties, they are each better suited
to different situations. Nevertheless, the index of relative riskiness has two
important advantages that make it, in our opinion, more relevant in many
cases. First, it is more likely that agents care about the relative return rather
than the absolute return of an investment. In stock markets, for example, it
is quite common to believe that only relative returns should affect investment
decisions. The price of a single security is almost irrelevant. Second, it is
reasonable to assume that investors have utilities that are close to CRRA
utilities. For such investors, as follows from Lemmas 3.2 and 3.3, the index
of relative riskiness is much more relevant.

Finally, it is noteworthy that although the two indices are not ordinally
equivalent, there are many pairs of securities on which the indices do agree.
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It would be interesting to characterize this set of securities for which absolute
and relative riskiness agree. It is to be hoped that further study will clarify
this connection.

Appendix

A Proofs

Since A is basically the index A∗ applied to absolute returns, many of the
statements in relation to A and their proofs appear already in Aumann and
Serrano (2008). Here we mostly focus on the proofs of statements in relation
to R.

In this section, investors i and j have utility functions ui and uj and
Arrow–Pratt coefficients %i and %j of relative risk aversion. Since utilities
may be modified by additive and positive multiplicative constants, we assume
throughout that

ui(1) = uj(1) = 0 and u′i(1) = u′j(1) = 1. (13)

Lemma A.1. For some δ > 1, suppose that %i(w) > %j(w) at each w with
1/δ < w < δ. Then ui(w) < uj(w) whenever 1/δ < w < δ and w 6= 1.

Proof. Let y be a number, 1/δ < y < δ. If y > 1, then, by equation (13),

log u′i(y) = log u′i(y)− log u′i(1) =

∫ y

1

[log u′i(z)]′dz =

∫ y

1

u′′i (z)

u′(z)
dz

=

∫ y

1

−(%i(z)/z)dz <

∫ y

1

−(%j(z)/z)dz = log u′j(y).

If, on the other hand, y < 1, the reasoning is similar but the inequality is
reversed, because then

∫ y
1

= −
∫ 1

y
. Thus when y > 1, log u′i(y) < log u′j(y)

and also u′i(y) < u′j(y), and when y < 1 log u′i(y) > log u′j(y) and also
u′i(y) > u′j(y). So if w > 1, then, by (13),

ui(w) =

∫ w

1

u′i(y)dy <

∫ w

1

u′j(y)dy = uj(w);

and if w < 1, then

ui(w) = −
∫ 1

w

u′i(y)dy < −
∫ 1

w

u′j(y)dy = uj(w).
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Corollary 5. If %i(w) ≤ %j(w) for all w > 0, then ui(w) ≥ uj(w) for all
w > 0.

Lemma A.2. For any security s, its relative riskiness R(s) is well defined.

Proof. For a given security s, we denote by ŝ the relative return of s, ŝ =
s1/s0. We define the function fs as follows:

fs(β) ≡ E ŝβ = Σpiŝ
β
i , (14)

where β is a real number. The first and second derivatives of fs are

f ′s(β) = Σpiŝ
β
i log ŝi, (15)

f ′′s (β) = Σpiŝ
β
i (log ŝi)

2. (16)

Since by definition at least one of the values of ŝ is greater than one and at
least one of the values is less than one,

lim
β→±∞

fs(β) =∞. (17)

In addition, since f ′′s is positive for all β, f ′s increases with β, which implies
that fs has a single minimum point. It follows from (14) that fs(0) = 1. If
f ′s(0) 6= 0, there should be another value of β, for which fs(β) = 1. Based on
this insight, we define β∗ as follows:

1. If f ′s(0) > 0, then there is only one additional value of β, β = β∗, in
which fs(β

∗) = 1 and β∗ < 0.

2. If f ′s(0) < 0, then there is only one additional value of β, β = β∗, in
which fs(β

∗) = 1 and β∗ > 0.

3. If f ′s(0) = 0, then there is no other value of β, β 6= 0, in which fs(β) = 1.
In this case we set β∗ = 0.

Since we assumed that the weighted geometric mean of the relative return
of securities is greater than one, f ′s(0) = Σpi log ŝi > 0, and the first case,
in which β∗ < 0, is satisfied. Defining R(s) = −1/β∗ shows the existence of
R(s) and also that R(s) > 0. This completes the proof.
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Lemma A.3. For any two securities s and r,

R(r) > R(s)⇔ fs(−1/R(r)) < 1.

Proof. We use the definition of fs of the previous proof. Since f ′s(0) > 0,
β∗ = −1/R(s) < 0, and the minimum point of fs is between −1/R(s) and
0 (scenario 1 in the proof of (A.2)). This, together with the continuity of
fs, implies that for any β, −1/R(s) < β < 0, fs(β) < 1. Since −1/R(s) <
−1/R(r) < 0, fs(−1/R(r)) < 1.

Lemma A.4. For any utility function uα and value of δ > 1 there is a
security s = s(α, δ), such that uα(ŝ) = 0 and ∀i, 1/δ < ŝi < δ, where
ŝ = s1/s0 and ŝis are the values that ŝ takes.

Proof. Let f(ε) be defined as f(ε) = εuα(
√

1/δ) + (1− ε)uα(
√
δ). It is easy

to see that if ε = 0, then f(ε) > 0, and if ε = 1, then f(ε) < 0. Since
f is continuous in ε, f(ε∗) = 0 for some ε∗ between zero and one. The
desired security is the one whose relative return takes the value

√
1/δ with

probability ε∗ and the value
√
δ with probability 1− ε∗.

Lemma A.5. If %i(wi) > %j(wj), then there is a security s that j R-accepts
at wj and i R-rejects at wi.

Proof. Without loss of generality, wi = wj = 1, and so %i(1) > %j(1).20 Let
% be a number between %i(w) and %j(w), %i(w) > % > %j(w). Since ui and uj
are twice continuously differentiable, it follows that there is a number h > 1
such that %i(w) > % > %j(w) at each w with 1/h < w < h. By Lemma A.4,
there is a security s(%, h) such that u% is indifferent between R-accepting or
R-rejecting it. Therefore, by Lemma A.1,

ui(w) < u%(w) < uj(w) whenever 1/δ < w < δ and w 6= 1 (18)

implies that ui(ŝ(%, h)) < 0 < uj(ŝ(%, h)), where ŝ = s1/s0. Hence i R-rejects
the security but j R-accepts it.

20For arbitrary wi and wj , define u∗i (x) = [ui(xwi)−ui(wi)]/(wiu′i(wi)) and u∗j similarly,
and apply the current reasoning to u∗i and u∗j . u

∗
i and u∗j R-accept or R-reject securities

at x = 1, just as ui and uj R-accept or R-reject securities at wi and wj , respectively. In
addition, u∗i (1) = u∗j (1) = 0 and u∗i

′(1) = u∗j
′(1) = 1.
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Proof of Lemma 3.1. The proof of the first part of the lemma appears
in Aumann and Serrano (2008). Here we prove the second part. We have
to show that %i(w) ≥ %j(w) for all wealth levels w if and only if i is no less
uniformly relative-risk averse than j.
“If”: Assume that there are wi and wj with %i(wi) < %j(wj). By Lemma
A.5, there is a security that i R-accepts at wi and j R-rejects at wj, thereby
contradicting i being less uniformly relative-risk averse than j.

“Only if”: Assuming that %i(wi) ≥ %j(wj) for all wealth levels wi and
wj, we must show that for both wealth levels, wi and wj, and security s, if
i R-accepts s at wi, then j R-accepts s at wj. Without loss of generality,
wi = wj = 1, and so we must show that

if i R-accepts s at 1, then j R-accepts s at 1.

From Corollary 5 (with i and j reversed), we conclude that uj(wj) ≥ ui(wi)
for each wi and wj, and so Euj(ŝ) ≥ Eui(ŝ), where ŝ = s1/s0. That yields
the above claim.

Lemma A.6. An agent i has a CRRA utility if and only if for any security
s and any two wealth levels, i either R-accepts s at both levels or R-rejects s
at both levels.

Proof. We denote by ŝ the relative return of s, i.e., ŝ = s1/s0. Recall that
all CRRA utility functions have the form

uα(x) =

{
(x1−α−1)

1−α if α 6= 1

log(x) if α = 1
(19)

for α > 0.
“Only if”: Let uα(x) be a CRRA utility with parameter α. uα R-accepts

s at w if and only if Euα(wŝ) > uα(w), that is, if and only if Euα(ŝ) > uα(1).
“If”: It follows from Lemma A.5; just take j = i.

Proof of Theorem 1. The first part of the theorem appears in Aumann
and Serrano (2008). Here we prove the second part.

For α > 0, let uα(x) be the CRRA utility function with parameter α. The
functions uα satisfy (13), and so by Lemma A.1 (with δ arbitrarily large) their
graphs are nested; that is,

if α > β, then uα(x) < uβ(x) for all x > 0, x 6= 1. (20)
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The existence of R(s) is proved in Lemma A.2.
To see that R satisfies the duality axiom, let i, j, r, h, and w be as in

the hypothesis of that axiom; without loss of generality, w = 1. Set γ ≡
1 + 1/R(s), η ≡ 1 + 1/R(h), αi = inf %i and αj = sup %j. For a given security
s, we denote by ŝ = s1/s0 the relative return of s. Thus

Euγ(ŝ) = 0 and Euη(ĥ) = 0. (21)

By hypothesis, R(s) > R(h), so η > γ. By Corollary 5,

ui(x) ≤ uαi(x) and uαj(x) ≤ uj(x) for all x. (22)

Now assume Eui(ŝ) > 0; we must prove that Euj(ĥ) > 0. From Eui(ŝ) > 0
and (22), it follows that Euαi(ŝ) > 0. So by (21), Eγ(ŝ) = 0 < Euαi(ŝ).
So by (20), γ > αi. By Lemma 3.1 αi ≥ αj so η > γ yields αj < η. Since

(21), (20) and (22) yield 0 < Euη(ĥ) < Euαj(ĥ) < Euj(ĥ), it follows that R
satisfies the duality axiom.

That R satisfies the scaling axiom is immediate, and so, indeed, R satisfies
the two relative axioms.

In the opposite direction, let Q be an index that satisfies the relative
axioms. We first show that

Q is ordinally equivalent to R. (23)

If this is not true, then there must exist s and r that are ordered differently
by Q and R. This means either that the respective orderings are reversed,
that is,

Q(s) > Q(r) and R(s) < R(r), (24)

or that the equality holds for exactly one of the two indices, that is,

Q(s) > Q(r) and R(s) = R(r) (25)

or

Q(s) = Q(r) and R(s) > R(r). (26)

If either (25) or (26) holds, then by the scaling axiom, replacing s by sδ for
sufficiently small δ > 1 leads to reversed inequalities. So without loss of
generality we may assume (24).
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Now let γ ≡ 1 + 1/R(s) and η ≡ 1 + 1/R(r); then (21) holds. By
(24), γ > η. Choose µ and ν so that γ > µ > ν > η. Then uγ(x) <
uµ(x) < uν(x) < uη(x) for all x 6= 0. So by (21) Euµ(ŝ) > Euγ(ŝ) = 0
and Euν(r̂) < Euη(r̂) = 0. So if i and j have utility functions uµ and uν ,
respectively, then i R-accepts s and j R-rejects r. But from µ > ν and
Lemma (3.1), it follows that i � j, contradicting the duality axiom for Q. So
(23) is proved.

To see that Q is a positive multiple of R, let s∗ be an arbitrary but fixed
security and set λ ≡ Q(s∗)/R(s∗). If s is any security and t ≡ Q(s)/Q(s∗),
then Q((s∗)t) = tQ(s∗) = Q(s), and so tR(s∗) = R((s∗)t) = R(s) by the
ordinal equivalence between Q and S, and R(s)/R(s∗) = t = Q(s)/Q(s∗),
and Q(s)/R(s) = Q(s∗)/R(s∗) = λ, and Q(s) = λR(s). This completes the
proof of Theorem A.

Needless to say, both duality and scaling are essential to Theorem 1.
Thus the mean log E log s satisfies scaling but violates duality, while the
index [R(s)], where [x] denotes the integer part of x, satisfies duality but
violates scaling. Neither E log s nor [R(s)] is even ordinally equivalent to R.

Proof of (6) in Section 2.3. It is enough to show that

lim
α→0

R(s(α))/α = A(s)/s0. (27)

Indeed, following Equation (3), R(s) = A∗(log(s1/s0)); hence

R(s(α))/α = A∗(log(1 + α(s1/s0 − 1)))/α,

which equals A∗(log(1+α(s1/s0−1))/α) (by scaling). Since A∗ is continuous,
the limit of this expression as α goes to zero equals A∗(s1/s0− 1) = A(s)/s0.

Proof of Lemma 3.2. For the proof of the first part of the lemma, see
Aumann and Serrano (2008). Here we prove only the second part.

An agent with a CRRA utility with parameter γ R-accepts security s if
and only if

fs(1− γ) > 1,

where fs(β) is the function defined in (14). Since for all β < β∗, fs(β) > 1
and for all β∗ < β < 0, fs(β) < 1 (by the proof of Lemma A.2), every CRRA
agent with a parameter greater than 1 − β∗ R-rejects s and every CRRA
agent with a parameter lower than 1− β∗ R-accepts s.
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Proof of Lemma 3.3. For the proof of the first part of the lemma, see
Aumann and Serrano (2008). Here we prove only the second part. Let ui
be i’s utility and assume that %i(x) < 1/R(s) + 1 for all x between wmin ŝ
and wmax ŝ, where ŝ = s1/s0. Define a utility uj as follows: when x is
between wmin ŝ and wmax ŝ, define uj(x) ≡ ui(x); when x ≤ wmin ŝ, define
uj(x) to equal a CRRA utility with parameter %i(wmin ŝ) and uj(wmin ŝ) =
ui(wmin ŝ) and u′j(wmin ŝ) = u′i(wmin ŝ); when x ≥ wmax ŝ, define uj(x)
to equal a CRRA utility with parameter %i(wmax ŝ) and uj(wmax ŝ) =
ui(wmax ŝ) and u′j(wmax ŝ) = u′i(wmax ŝ). Let uk be a CRRA utility with
parameter [1/R(s) + 1]− ε. Then

min
x
%k(x) > max

x
%j(x)

for positive ε sufficiently small. By Lemma 3.2, a CRRA person with pa-
rameter [1/R(s) + 1] is indifferent between R-accepting and R-rejecting s.
Therefore, k, who is less risk averse, R-accepts s, and so j also R-accepts s.
But between the minimum and maximum of wŝ, the utilities of i and j are
the same. So i R-accepts s at w.

Proof of Lemma 4.1. The first part of the lemma is proved in Aumann
and Serrano (2008). Here we prove only the second part.

For γ ≥ 0, set f(γ) = Eŝ1−γ/(1 − γ) and f∗(γ) = Eŝ1−γ∗ /(1 − γ). Let s
and s∗ be two securities whose relative returns are ŝ and ŝ∗, respectively. If
s first-order relatively dominates s∗, then f(γ) < f∗(γ) whenever γ > 1. It
follows that the unique positive root of f∗ = 1 is less than that of f = 1, an
so R(s∗) > R(s).

If s second-order relatively dominates s∗, then, f(γ) < f∗(γ), too, because
of the strict convexity of x1−γ/(1 − γ) as a function of x for all x > 0. The
remainder of the proof is as before.

Proof of Lemma 4.2. Let ŝ = [x1, p1;x2, p2; ...;xn, pn] be the relative re-
turn of a security s. For convenience, we denote ε = ŝ− 1, where εi = xi− 1.
We have to show that for any 0 < α < 1, R(s) > R(s(α)). That is the result
of the following lemma (whose claim is a bit stronger).

Lemma A.7. Every agent who R-accepts s would R-accept s(α) for all 0 <
α < 1.

Proof. By definition, for every concave function u and two different numbers
x and y,

u(αx+ (1− α)y) > αu(x) + (1− α)u(y).
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Submitting x = w + wε and y = w, we get

u(w + αwε) > αu(w + wε) + (1− α)u(w),

and so,
Eu(w + αwε) > αEu(w + wε) + (1− α)u(w).

If an agent with utility u and wealth w R-accepts s, then Eu(w+wε) > u(w)
implies that Eu(w + αwε) > u(w), which means that the agent R-accepts
s(α). In terms of Hart (2011), s(α) acceptance dominates s.

Now, if anyone who R-accepts s also R-accepts k (but not vice versa)
then R(s)>R(k); otherwise there would have been a CRRA agent who would
R-accept s but R-reject k.

Proof of the Portfolio Diversification Property. The proof of Equa-
tion (9) follows from the subadditivity of A (see Equation 5.8.2 in Aumann
and Serrano 2008), which implies that

A(aα(h, k)) ≤ αA(h) + (1− α)A(k),

and equality obtains if and only if the absolute return of h is a positive
multiple of the absolute return of k. If A(h) 6= A(k) then αA(h) + (1 −
α)A(k) < max(A(h), A(k)), and it follows that unless the returns of k and h
are equal, A(aα(h, k)) < max(A(h), A(k)).

To prove Equation (10), let ĥ = h1/h0 and k̂ = k1/k0 be the relative
returns of h and k, respectively, and assume that ĥ and k̂ are not equal.
Without loss of generality assume that R(h) ≥ R(k). From the convexity of
the function f(x) = x(−1/R(h)) we get

E(αĥ+ (1− α)k̂)−1/R(h) < αEĥ−1/R(h) + (1− α)Ek̂−1/R(h) ≤ 1,

where the last inequality follows from Lemma A.3. Hence, it follows from
the same lemma and from the convexity of f(x) that unless the returns of h
and k are equal, R(rα(h, k)) < R(h).

Note that while it is shown that A is convex, it follows from the proof
that R is quasiconvex. Many of our tests further indicate that R is also
convex, but at this stage we do not have formal proof of this. Therefore, the
convexity of R remains a conjecture.
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Proof of Theorem 4. Here we prove only the second part of the theorem;
for the proof of the first part see Hart (2011).

Let r and k be two securities such that R(k) > R(r). If agent i R-rejects r
at any wealth level, then it follows from Lemma 3.3 that for any w0 > 0 there
is w′0 ∈ (w0 min r, w0 max r) for which %i(w

′
0) ≥ 1/R(r) + 1. Since IRRA is

assumed, it follows that for all w > 0, %i(w) > 1/R(r) + 1. That implies that
for all w > 0 %i(w) > 1/R(k) + 1. So it follows from 3.3 that k is R-rejected
at all w.

The opposite direction is proved as follows. Assume that r wealth uni-
formly dominates k but that R(r) > R(k). Let x = (1/(−1 + R(r)) +
1/(−1 +R(k)))/2. According to Lemma 3.2, a CRRA agent with parameter
x R-rejects r but R-accepts k at any w > 0, a contradiction.
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