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Abstract

There are several procedures for selecting people at random. Mod-
ern and ancient stories as well as some experiments suggest that in-
dividuals may not view all such lotteries as “fair.” In this paper,
we compare alternative procedures and show conditions under which
some procedures are preferred to others. These procedures give all
individuals an equal chance of being selected, but have different struc-
tures. We analyze these procedures as multi-stage lotteries. In line
with previous literature, our analysis is based on the observation that
multi-stage lotteries are not considered indifferent to their probabilis-
tic one-stage representations.
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1 Introduction

Since Diamond (1967), it became clear that social lotteries can and should be
used to enhance fairness and equality in the allocation of indivisible goods.
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Unlike Harsanyi (1955,1975), who concentrated on the ex-post perspective,
social lotteries can create a certain degree of ex-ante equality, at least until
the outcome of the lottery is revealed. Such procedures were axiomatized
both at the social level (see, e.g., Epstein and Segal (1992)) and at the in-
dividual level (Karni and Safra (2002)). The literature is however silent
regarding the actual randomization mechanism society should use. Our aim
in this paper is to highlight a neglected aspect of the different procedures
— their attractiveness and fairness as viewed by those who participate in
them. Our main point is that if the aim of social lotteries is to eliminate
complaints about favoritism, then these lotteries must be deemed fair not
only by the social planner, but more importantly, by those who benefit or
suffer from their consequences. And since fairness is often identified with
equality, society should not use procedures that yield what subjects may be-
lieve to be a differential treatment. It may also be that participants, rightly
or wrongly, believe that some procedures are more vulnerable to potential
cheating than others. Moreover, suppose that participants are not indif-
ferent between procedures just because they have preferences for the way
uncertainty is resolved. Pareto concerns then dictate that social planners
should pay attention to the mechanisms they use and not just to the prob-
abilities they produce. This is clearly demonstrated by the evolvement of
the draft lottery during the Vietnam-war era, discussed in section 5 below.
Such arguments suggest that social planners should take into consideration
individual perception and preferences over randomization mechanisms, even
if the planners themselves concern themselves only with the implied proba-
bility distribution.

Suppose we want to use a random procedure in order to select one out of
n people to receive a certain indivisible good. One can think of two natural
such procedures. Either put slips with the n people’s names in a box and
pick one slip at random, or put one green and n − 1 red balls in an urn,
and then ask each to pick a ball, where the one who picked green is selected.
Both methods seem fair and are statistically equivalent, as they give each
person the same 1

n
probability of being selected.

But the two may not seem identical to the n participants. To begin
with, in the first procedure there is only one acting person (which may or
may not be one of the n people), while in the second procedure, each of the
n individuals takes an active part.1 More importantly, the two procedures

1See e.g. Eliaz and Rubinstein (2014, P4), where more than 40% of the participants
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represent totally different lotteries. The first is a simple lottery, while for
almost each of the n individuals the second procedure offers a compound
lottery which is likely to be appreciated differently by participants according
to the order of the draws.

Formally, we analyze two basic procedures. 1. Pre-ordered draws, where
n−k balls of one color (red) and k balls of another color (green) are put into
an urn and, in their turn, subjects pick a random ball without replacement.
The selected persons are those who picked the green balls. 2. Names lottery,
where the n names are put in an urn and an organizer randomly selects one
or some of them. We also discuss variants of these procedures: 3. Pre-ordered
draws when a winning ball is added, and if too many people are selected, the
procedure starts over again. 4. Names lottery, where names are repeatedly
picked up (with replacement), and the first person whose name appears in
two successive draws is selected. We compare these procedures and show
how their desirability changes with the size of the group and the identity of
each participant. Most, but not all of our results assume that the number of
chosen people is either one or all but one.

Most of the procedures we discuss involve multi-stage lotteries and our
analysis depends on the evaluation of such lotteries. The literature describes
two ways in which multi-stage lotteries can be transformed into simple, one-
stage lotteries. The first is using the reduction axiom, according to which
each possible outcome is listed with its compound probability, obtained by
multiplying the probabilities along the path to that outcome. Alternatively,
each simple lottery is replaced by its certainty equivalent and, when applied
recursively, the value of the multi-stage lottery is computed (see Kreps and
Porteus (1978) and Segal (1990)). Expected utility is the only theory un-
der which decision makers are indifferent between these two simplifications.
Several theoretical models use this distinction between the two methods to
explain phenomena like ambiguity aversion (Segal (1987), Klibanoff, Mari-
nacci, and Mukerji (2005)) or to analyze variants of the housing allocation
(one-sided matching) problem (Dillenberger and Segal (2021)). Experiments
tend to support the second approach (see Starmer (2000), Halevy (2007),
Abdellaoui, Klibanoff, and Placido (2015), Harrison, Martinez-Correa, and
Swarthout (2015), and Masatlioglu, Orhun, and Raymond (2017)). As we
are interested in people’s subjective evaluation of social lotteries, we follow

were not indifferent to the question of who is going to flip a coin between a pair of twins
— their mother or a doctor.
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this approach.

2 Preliminaries

Let T = {g, b} be a set of two outcomes (“good” and “bad”) and let A =
[a, b] ⊂ ℜ be a set of monetary payoffs, large enough so that each person in
society has (personal) g, b such that he is indifferent between g and g and
between b and b. This indifference is preserved even when outcomes are
uncertain — he is also indifferent between (g, p; b, 1− p) and (g, p; b, 1− p).

Let � be a preference relation over lotteries. Given a two-stage lottery
L = (X1, q1; . . . ;Xℓ, qℓ) where X1, . . . , Xℓ are simple lotteries, we assume that
the lottery L is evaluated by decision makers using recursive utility. That is,
L is transformed to the simple lottery C(L) = (CE(X1), q1; . . . ; CE(Xℓ), qℓ),
where CE(X) is the certainty equivalent of X, satisfying (CE(X), 1) ∼ X
(see Segal (1990)). Denote by R(L) the one-stage lottery obtained from L
by multiplying the probabilities. Dillenberger (2010) suggested the following
assumption:

Definition 1. The preference relation � satisfies poru (preferences for one-
shot resolution of uncertainty) if for every L = (X1, q1; . . . ;Xℓ, qℓ), R(L) �
C(L).

In particular, poru implies the following weaker requirement, which is
the one we use throughout (note that � is now used to compare a simple
lottery with a compound lottery):

Definition 2. The preference relation � satisfies weak-poru if for all x, y

(x, pq; y, 1− pq) � ((x, p; y, 1− p), q; y, 1− q) (1)

Dillenberger (2010) proved that under some standard assumptions, poru
holds if and only if preferences also satisfy negative certainty independence:
“If the sure outcome x is not enough to compensate the decision maker for
the risky prospect X, then mixing it with any other lottery, thus eliminating
its certainty appeal, will not result in the mixture of x being more attractive
than the corresponding mixture of X” (p. 1980). Bernasconi and Bernhofe
(2020) found that inexperienced decision makers behave according to eq. (1)
for x > y > 0, although these preferences are less significant for low values
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of pq. For more support of preferences for one-shot resolution of uncertainty
see references in the Introduction.

For some of our results we use the rank dependent (RD) model (Quiggin
(1982)). According to this model, for x > y

RD(x, p; y, 1− p) = u(x)f(p) + u(y)[1− f(p)] (2)

where f is continuous and strictly increasing, u(0) = 0, f(0) = 0, and f(1) =
1.2 For X1 � X2, the value of the two-stage lottery (X1, q;X2, 1− q) is

RD(u−1(RD(X1)), q; u
−1(RD(X2)), 1− q) =

RD(X1)f(q) + RD(X2)[1− f(1− q)] (3)

Let g(p) = 1−f(1−p). Observe that g(0) = 0, g(1) = 1, and g is concave
iff f is convex. We can rewrite eq. (2) as

u(y)g(1− p) + u(x)[1− g(1− p)] (4)

When using the RD model, we will assume that the utility from being selected
for a good outcome is 1, and the utility from being selected for a bad outcome
is 0.

In the RD model, risk aversion (in the sense of rejection of mean preserv-
ing spreads) requires that f is convex (and g concave, see Chew, Karni, and

Safra (1987)). The elasticity of a function h(p) is given by ηh(p) = ph′(p)
h(p)

.

Increasing elasticity of f is linked to the common ratio effect 3 and to the re-
cursive model of ambiguity (Segal (1987,1987a)). The following two lemmas
discuss the connection between weak-poru and properties of f and g.

Lemma 1. The RD model satisfies weak-poru whenever the elasticity of f
is increasing and correspondingly, the elasticity of g is decreasing.4

2Most of our results require only two different outcomes, so apply to the larger set
of biseparable utilities (Ghirardato and Marinacci (2001)), including, for example, Gul’s
(1991) disappointment aversion theory. However, claims 9 and 10 below need more than
two outcomes, therefore we use the RDmodel throughout. For x1 > . . . > xn, the RD value
of the lotteryX = (x1, p1; . . . ;xn, pn) is u(x1)f(p1)+

∑n

i=2
u(xi)[f(

∑i

j=1
pj)−f(

∑i−1

j=1
pj)].

3For example, (1M, 1) ≻ (5M, 0.8; 0, 0.2) while (5M, 0.04; 0, 0.96) ≻ (1M, 0.05; 0, 0.95).
See Allais (1953), MacCrimmon and Larsson (1979), Starmer (2000) and further references
there.

4These two assumptions do not contradict each other, see Segal (1987, p. 185).
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Lemma 2. The four combinations of convexity–concavity and increasing–
decreasing elasticity of h are possible. However, if the first non-zero deriva-
tive of h at 0 is finite, then increasing elasticity implies convexity, although
convexity does not imply increasing elasticity.

In the sequel, we analyze changes in individuals’ welfare due to changes in
the basic parameters, for example, the number n of individuals from whom
we select. These are discrete variables, but we consider them as continuous
so that we can differentiate with respect to them. The results are of course
meaningful only for the integer values of these variables.

3 Pre-ordered draws

Consider the following procedure. Two types of balls, green and red, are put
in an urn. Agents are pre-ordered and one after the other they draw from
the urn with no replacement. Those who drew green are selected for a good
outcome and those who drew red receive a bad outcome. Just before his
turn arrives, each person is told how many green and red balls were already
drawn. Denote by P (n, k) the procedure in which the urn initially contains
k green and n− k red balls.

Consider P i(n, 1), the lottery faced by individual i in procedure P (n, 1)
before the first ball is drawn. With probability i−1

n
, someone draws the green

ball before i’s turn arrives, i is not selected, and gets 0. (Recall that he’ll find
out whether this happened just before his turn arrives). With the remaining
probability, n−i+1

n
, the green ball will not be drawn before his turn and then

he is facing a lottery in which with probability 1
n−i+1

he draws the green

ball, is selected, and gets 1 and with probability n−i
n−i+1

he draws a red ball, is
not selected, and gets 0. In other words, individual i is facing the two-stage
lottery

P i(n, 1) =
((

1, 1
n−i+1

; 0, n−i
n−i+1

)

, n−i+1
n

; 0, i−1
n

)

(5)

Likewise, in procedure P (n, n− 1) person i wins for sure if the red ball was
picked by one of the first i− 1 participants. The probability of this event is
i−1
n
. If they all picked a green ball, then he has probability 1

n−i+1
to pick the

losing ball. Ex-ante, he is facing the two stage lottery

P i(n, n− 1) =
((

0, 1
n−i+1

; 1, n−i
n−i+1

)

, n−i+1
n

; 1, i−1
n

)

(6)
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Procedures P i(n, 1) and P i(n, n− 1) are depicted in Figure 1.

P i(n, 1) P i(n, n− 1)

0
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1

01

i−1
n

n−i+1
n

n−i
n−i+1

1
n−i+1

i−1
n

n−i+1
n

n−i
n−i+1

1
n−i+1

Figure 1: Procedures P i(n, 1) and P i(n, n− 1) for person i

In this section we deal with some issues concerning the pre-ordered pro-
cedure and two of its possible variants. First, we show that the position in
the procedure is not a matter of indifference. Moreover, preferences for such
positions depend on the way information about other participants is revealed
(section 3.1). We then analyze preferences for the number of individuals tak-
ing part in the procedure (section 3.2), and compare changes in the group
size to a possible manipulation of the urn, where a winning ball is added and
if necessary, the procedure is repeated (section 3.3).

3.1 Does the order matter?

When i = 1 and when i = n, the two-stage lottery of eq. (5) becomes
(1, 1

n
; 0, n−1

n
). The first person is obviously facing a simple lottery — either

he draws green (the probability of this event is 1
n
), or he does not. Before

person 1 draws, the last person to draw knows that when his turn arrives the
last remaining ball will be either green or red, and ex ante, the probabilities
of these events are 1

n
and n−1

n
. All other agents face a real two-stage lottery

with the reduced form (1, 1
n
; 0, n−1

n
). Likewise, for i = 1 and i = n, the two-

stage lottery of eq. (6) becomes (1, n−1
n
; 0, 1

n
) while all other agents face a real

two-stage lottery with this reduced form. We thus get our first result:
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Claim 1. Assume weak-poru. In the pre-ordered procedure P , if only one
person is selected to receive a different outcome from everyone else, then it
is best to be either the first or the last to draw.5

In P i(n, j) person i may get one of several simple lotteries. If poru (and
not just weak-poru) is assumed, then the claim holds for any number of
selected individuals.

Claim 1 does not depend on the specific model decision makers use for
the evaluation of lotteries (but it depends of course on the analysis of this
procedure as a two-stage lottery). More detailed results can be obtained for
specific models like rank-dependent. Using eqs. (3) and (2), the value of
lottery (5) is

RD(P i(n, 1)) = f
(

1
n−i+1

)

f
(

n−i+1
n

)

(7)

Similarly, by eqs. (3) and (4), the value of lottery (6) is

RD(P i(n, n− 1)) = g
(

n−i+1
n

) [

1− g
(

1
n−i+1

)]

+
[

1− g
(

n−i+1
n

)]

= 1− g
(

n−i+1
n

)

g
(

1
n−i+1

)

(8)

The position in the queue changes the structure of the two-stage lottery
in which each person participates and obviously, the values of RD(P i(n, 1))
and RD(P i(n, n− 1)) change with i.

Claim 2. Let i∗ = n + 1 − √
n. If the elasticity of f is increasing, then

RD(P i(n, 1)) is decreasing in i until i∗ and increasing thereafter. The same
holds for RD(P i(n, n− 1)) if the elasticity of g is decreasing.

As mentioned above, increasing elasticity of f is associated with the
common ratio effect, hence so is the behavior described by the first part
of Claim 2.

Claim 2 suggests a possible tool social planners can use to improve social
welfare. If individuals have different, yet known, preferences over lotteries,
then different orders of the draws in the P procedure create by themselves
different distributions of utilities. We do not explore this possibility as we

5This is exactly the sentiment expressed by Mrs. Montgomery and Mr. Belmont in
Graham Greene’s Dr. Fischer of Geneva, or the Bomb Party.
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only assume general properties of preferences, rather than specific functional
forms.

Our analysis and results are quite sensitive to the exact protocol used for
the social lottery. We assumed so far that people know in advance that they’ll
find out just before their turn arrives how many balls of each color were
already drawn beforehand. But it is easy to outline alternative scenarios.
Consider for example procedure Q(n, k), which is the same as P (n, k), only
that everyone is watching the outcome of each draw right away. We call
this procedure pre-ordered with full information. In Q(n, 1), person i will
participate in an i-stage lottery, where in each of the first i−1 stages either (i)
the person whose turn arrives picks the green ball, the procedure terminates,
and person i receives 0, or (ii) all the first i− 1 people picked red, and in his
turn, person i has 1

n−i+1
chance of drawing the green ball. Figure 2 depicts

the lotteries Qi(n, 1) and Qi(n, n− 1) faced by person i.

Qi(n, 1) Qi(n, n− 1)

0

1 0 0 1

1

10

1
n−i+1

n−i
n−i+1

·
·

·
·

1
n

n−1
n

1
n−1

n−2
n−1

1
n

n−1
n

1
n−1

n−2
n−1

1
n−i+1

n−i
n−i+1

·
·

·
·

Figure 2: Procedures Qi(n, 1) and Qi(n, n− 1) for person i
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Claim 3. Assuming weak-poru, the values of the pre-ordered with full in-
formation procedures Qi(n, 1) and Qi(n, n− 1) are decreasing with i.

Claim 2 and 3 show how sensitive subjects may be to the exact protocols.
Although both P and Q describe pre-ordered procedures, observing all stages
of the lottery entirely changes its desirability to those who are at the end of
the line to draw.

Remark 1. Claims 1 and 3 (as well as Claim 8 below assume weak-poru.
Experimental evidence suggests however that although some people judge
fewer stages to be more fair, not all agree (see the cited experiment by Eliaz
and Rubinstein (2014)). If instead of weak-poru the opposite is assumed,
that is, if for all x, y, ((x, p; y, 1− p), q; y, 1− q) � (x, pq; y, 1− pq), then the
three claims using weak-poru are reversed. For example, Claim 1 will say
that it is worst to be first or last and Claim 3 will state “increasing with i.”

3.2 Is more always better?

When n− 1 out of n people are going to be selected for a good outcome, it
seems almost obvious that each of them would like the number n to be as high
as possible, since the ex-ante probability of being selected, n−1

n
, is increasing

with n. But as we have seen in the previous section, the structure and
evaluation of the multi stage lotteries faced by the n individuals may cause
them to have preferences over lotteries with the same reduced probabilities.
In fact, some people may even prefer a lower value of n.

Consider person #900 out of 1,000 in procedure P (n, n − 1). By the
time his turn arrives, it is very likely that the red ball was already picked by
someone else, in which case he knows for sure that he is going to get the good
outcome. However, if he is #900 out of 10,000, then it is very likely that
all 899 people before him picked green balls. As he will have to participate
in a lottery in which picking the red ball is still possible, he may prefer the
former case to the latter. We do not claim that this is likely to happen, only
that it may happen. However, as the next claim shows, first-order stochastic
dominance implies that this will never happen to candidates who succeed the
added person.

Claim 4. Let I = {1, i0, . . . , n}. Suppose an individual is added at position
i0 without changing the order of the rest, pushing each person in {i0, . . . , n}
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one stage down. Then using the P (n+ 1, 1) procedure in order to allocate a
desirable outcome, every individual i ∈ I in the original list becomes strictly
worse off and using P (n+1, n), every individual i ∈ I becomes strictly better
off.

To analyze the change in the welfare of those who precede that added
person, we restrict attention to the RD model. We say that a function h
satisfies condition (∗) for individual i if

i− 1

n
6

ηh
(

1
n−i+1

)

ηh
(

n−i+1
n

) (9)

Claim 5. Consider the allocation of desirable goods. Suppose an individual
is added at position i0 without changing the order of the rest and let person
1 < i < i0 be an RD maximizer. If f satisfies condition (∗), then in the
P (n+ 1, 1) procedure person i becomes worse off and if g satisfies condition
(∗), then in P (n+ 1, n) person i becomes better off.

The lhs of eq. (9) is always less than 1. The rhs is greater than 1
whenever the elasticity at 1

n−i+1
is greater than the elasticity at n−i+1

n
. As

1
n−i+1

> n−i+1
n

iff i > i∗ = n+1−√
n, this observation leads to the following

corollary:

Corollary 1. Suppose an individual is added at position i0 > i∗ without
changing the order of the rest. If the elasticity of f is increasing, then for
i∗ 6 i < i0, RD(P

i(n, 1)) is decreasing in n. If the elasticity of g is decreasing,
then for i 6 i∗, RD(P i(n, n− 1)) is increasing in n.

Clearly condition (∗) for individual i is satisfied for h(p) = pα (observe
that the lhs of eq. (9) is less than 1 and the elasticity of pα ≡ α). However,
it does not necessarily hold for all functions f , even if they are convex. For
example, fix n and let

f(p) =











n−1
n2 p p 6 1

n−1

(n−1)(n2−1)
(n−2)n2 p+ 1− (n−1)(n2−1)

(n−2)n2 p > 1
n−1

The function f is convex, it does not satisfy condition (∗) for individual 2,
and, indeed, individual 2 prefers P 2(n+1, 1) to P 2(n, 1) when another person
is added after him.
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3.3 Adding winning balls

Consider the following W (n, n − 1) procedure for selecting n − 1 out of n
people for a good outcome. Put n green and one red ball in an urn and let the
n candidates draw balls (with no replacement) according to a pre-arranged
order.6 If someone picked the red ball, then the other n − 1 people are
selected. If not, repeat this procedure using the same order. Like procedure
P , participants are informed about the outcome of the previous stages just
before their turn arrives. They also find out if the procedure needs to be
repeated before it starts all over again. We show in this section that although
this procedure may not be attractive to all, such preferences are not universal
as some individuals will prefer it to P (n, n− 1).

Person i is facing a (potentially repeated) three-stage lottery. In the first
stage, individuals before him draw balls. The probability that one of them
has drawn the red ball is i−1

n+1
, in which case the procedure terminates and

person i is selected. If not, move to the second stage which is person i’s
turn. In this stage, his probability of drawing a red ball is 1

n−i+2
, in which

case he gets 0 and the procedure is over. Otherwise, move to the third stage,
where the probability of person i being selected is the probability that one
of the last n − i people draws the red ball, that is, n−i

n−i+1
. If this does not

happen, then the procedure is repeated. Person i is thus facing the following
multi-stage lottery W i(n, n− 1):7

(

1, i−1
n+1

;
((

1, n−i
n−i+1

;W i(n, n− 1), 1
n−i+1

)

, n−i+1
n−i+2

; 0, 1
n−i+2

)

, n−i+2
n+1

)

(10)

We show next that there is a connection between preferences for adding
balls and preferences for adding individuals as discussed in section 3.2. In
the unintuitive case in which a person in the pre-ordered procedure prefers
not to add a candidate when all but one are selected for a good outcomes, he
will also prefer not to add an extra ball. This result does not depend on the
functional form used to evaluate lotteries. On the other hand, if P i(n, n− 1)
is improving when a person is added at the end of the order, then it is possible

6Such a procedure is suggested in Talmud Yerushalmi, Sanhedrin 1:7 as a possible
solution to unfairness of pre-ordered draws.

7The lottery W i(n, n − 1) is an infinite-stage lottery, as the procedure may need to
repeat itself again and again, albeit with shrinking probability. Since the value of the
lottery must be between the values of its most extreme possible outcomes, the value of
lottery (10) is well defined.
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(though not guaranteed) that person i will like to add a winning ball to the
urn, even if it means that with some positive probability he’ll have to go
through the whole procedure again.

Claim 6. If P i(n, n − 1) � P i(n + 1, n), that is, if when participating in
the pre-ordered procedure P i(n, n − 1), person i prefers not to add another
participant to the end of the order, then he also prefers P i(n, n − 1) to
W i(n, n−1). But if P i(n+1, n) ≻ P i(n, n−1), then any preferences between
W i(n, n− 1) are P i(n, n− 1) possible.

The general analysis of W i(n, 1), where one person is to be selected for
a good outcome but two green balls (and n− 1 red balls) are put in the urn
is quite complicated. We offer here analysis of the preferences of the first
person to draw, for the case in which his preferences are RD with f(p) = pα.
This function has constant elasticity α, and indeed, as in this case f(pq) =
f(p)f(q), these preferences are neutral with respect to weak-poru.

Claim 7. Suppose that the preferences of person 1 are RD with f(p) = pα.
Then W 1(n, 1) � P 1(n, 1) iff α 6 1.

4 Names lotteries

In this section we analyze a family of procedures that can be labeled “names
lottery.” In such procedures the names of the candidates are put in an urn,
and an impartial observer draws the desired number of names out of it.
Depending on the exact procedure, the analysis of such lotteries too depends
on decision makers’ attitudes towards multi-stage lotteries.

4.1 One appearance

The simplest case of names lottery is N(n, 1), where the observer draws one
name from the urn and the individual whose name has been drawn is selected
to receive the desired outcome.8 Observe that all individuals are facing the
same lottery

(

1, 1
n
; 0, n−1

n

)

.

8Such is the lottery conducted by Nestor to determine which of the nine Greek heroes
will duel Hector (Iliad VII, 171–182).
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Similarly, we can define the procedure N(n, k) where the n names are
placed in an urn and the k names drawn by an impartial observer are selected
for the desired outcome. Unlike N(n, 1), this is a multi-stage lottery, where
with probability 1

n
, each person is selected in the first round. If not selected,

with probability 1
n−1

he is selected in the second round, and so on until k
names have been drawn.9 Under procedure N(n, k) each individual is thus
facing the lottery

(

1, 1
n
;
(

1, 1
n−1

;
(

. . .
(

1, 1
n−k+1

; 0, n−k
n−k+1

)

. . .
)

, n−2
n−1

)

, n−1
n

)

(11)

These procedures are depicted in Figure 3.

N(n, 1) N(n, k)

1

1 0

1

1

0

1
n

n−1
n

1
n

n−1
n

1
n−1

n−2
n−1

1
n−k+1

n−k
n−k+1

·
·

·
·

Figure 3: Procedures N(n, 1) and N(n, k)

We first compare the pre-ordered P (n, k) and the names N(n, k) proce-
dures when exactly one person is going to get a different outcome from the

9Another possibility is to prepare
(

n

k

)

slips with all combinations of k people and to
pick one at random. This may become cumbersome even for relatively small numbers like
n = 30 and k = 10 where more than 30 million slips are needed. We do not discuss this
procedure here.
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rest, that is, k = 1 or k = n− 1. This analysis requires only the weak-poru
assumption. Comparing Figures 1 and 3, it is clear that the names procedure
is preferred to the pre-ordered one when one person is selected. Not surpris-
ingly, these preferences are reversed when n− 1 persons are selected, as the
pre-ordered procedure still induces only two stages of uncertainty, while the
names procedure requires n− 1 stages.

Claim 8. Assuming weak-poru, person 1 < i < n prefers N(n, 1) to P i(n, 1)
(with indifference for i = 1, n) and for all i, P i(n, n − 1) is preferred to
N(n, n− 1).

The reason N(n, 1) is preferred to P i(n, 1) for all but the first and last
persons to draw is that the former is a single-shot lottery, while the latter
requires two steps. But this advantage disappears once two or more persons
are selected. While P i(n, k) remains a two-stage lottery — the first stage
determines the composition of the urn when person i’s turn arrives and the
second stage is the actual lottery played by that person — procedure N(n, k)
requires k stages. As we show next, this makes a difference already for the
case k = 2, that is, when two people are selected.

Consider P i(n, 2) where 2 < i < n−2. Initially the urn contains two green
balls, but when person i’s turn arrives, the number of the green balls still in
the urn may be zero, one, or two. He’ll therefore face, respectively, the lot-
teries (0, 1) (that is, zero for sure), (1, 1

n−i+1
; 0, n−i

n−i+1
), or (1, 2

n−i+1
; 0, n−i−1

n−i+1
).

The probability of having no green balls left is the probability that two of the
first i−1 participants picked green, that is, (i−1)(i−2)

n(n−1)
. Likewise, the probabil-

ities the one or two of the green balls are left are 2(i−1)(n−i+1)
n(n−1)

and (n−i+1)(n−i)
n(n−1)

(see Figure 4). Obviously, weak-poru cannot be applied to P i(n, 2), but the
RD model enables comparisons of such lotteries. The next claim shows that
while the RD model does not imply that when society needs to choose two
members everyone will prefer the names lottery to the pre-ordered one, there
are conditions under which the the pre-ordered lottery will be chosen.

Claim 9. Consider an RD decision maker with f(p) = pα, α > 1. Then for
all i and n, P i(n, 2) is preferred to N(n, 2). However, this result does not
hold for all convex functions f .
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P i(n, 2) N(n, 2)

0

01

1

1 0 1 0

(i−1)(i−2)
n(n−1)

(n−i+1)(n−i)
n(n−1)2(i−1)(n−i+1)

n(n−1)

1
n−i+1

n−i
n−i+1

2
n−i+1

n−i−1
n−i+1

1
n

n−1
n

1
n−1

n−2
n−1

Figure 4: Procedures P i(n, 2) and N(n, 2)

4.2 Two in a row

In this section we discuss a variant of the names lottery procedure where
one of n people is selected. The names of the candidates are written on
n balls and are put in an urn from which they are repeatedly drawn (with
replacement). The first name to appear twice in a row is selected. Denote
this procedure T (n).

Consider this procedure from the point of view of person i. In the first
draw, there are two possibilities. A: his name appears, B: the name of
somebody else appears. The probabilities of these events are 1

n
and n−1

n
,

respectively. Outcome A leads to a lottery, where with probability 1
n
his

name is drawn again and he receives the good. With probability n−1
n

another
name appears, and therefore he receives B. Outcome B leads to another
lottery, where with probability 1

n
his name appears and he receives A, with

probability 1
n
the name that was drawn in the last round appears again,

leaving person i with zero (as the other person wins), and with probability
n−2
n

another name appears, and person i receives outcome B again. See
Figure 5.

This procedure terminates with probability 1, and since all participants
are in a symmetric position, each has probability 1

n
to be selected. If pref-

erences satisfy poru, then obviously N(n, 1) ≻ T (n). Observe however that
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T (n) A B

A B selected B

1
n

n−1
n

1
n

n−1
n

not
selected

BA

1
n 1

n

n−2
n

Figure 5: Procedures T (n)

since B permits three different outcomes, weak-poru cannot be applied to
T (n). We show next that within the RD model, a different condition than
weak-poru determines preferences over N(n, 1) and T (n).

Claim 10. An RD decision maker with a convex probability transformation
function f prefers N j(n, 1) to T j(n) for j ∈ {win,lose}, while concave f leads
to the opposite preferences.10

5 Draft Lotteries

To recruit more soldiers during the Vietnam war, the US Army used a draft
lottery. Slips bearing the numbers 1–366 (representing the days of the year)
were put in capsules, mixed, and drawn at random to determine the order of
the date-of-births (dob) by which new recruits will be drafted. We call this
method Procedure A. The lottery took place on December 1, 1969, and the
first to be drawn was 258 (September 14), the second 115 (April 24), the last
one being 160 (June 8).11 Evidently, the capsules were not properly mixed
(see Fienberg (1971)) and the army looked for an alternative method.

Since it is physically hard to properly mix 366 capsules, a simple solution
would be to divide the year into six 61-days segments and then have two
lotteries: One will determine the order of the six segments, while the other

10Claims 7 and 9 assumed more restrictive conditions. Recall that pα is convex for α > 1
and concave when α < 1.

11A second lottery took place on the same day to determine the order of potential
recruits in each date (Starr (1997, §14)), but as this stage is necessary for all methods
discussed in this section we’ll ignore it.
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will dictate the order of the 61 days (presumably, shuffling 61 capsules is
a lot more likely to yield a true mix than doing it with 366 capsule). Call
it Procedure B. Suppose the segments are randomly ordered 4–2–5–6–1–3,
and the first of the 61 numbers to be drawn is 15. Then the first date to
be drafted will be the 198th day of the year (which is the 15th day of the
4th segment), that is, July 16, the second date will be 76 (the 15th day of
the 2nd segment), that is, March 16, and so on. This method was not used.
Instead, the following Procedure C was employed.

Two drums, each with 366 capsules12 containing the numbers 1–366, were
prepared for the lottery held on 1 July 1970, one representing day of the year,
the other the ranks in the draft.13 Pairs of capsules were drawn simultane-
ously from the two drums, matching dates of birth with the number of the
draft.14 Surprisingly, this method is quite ancient. According to the biblical
story,15 once they conquered the land of Canaan, the Israeli tribes were to al-
locate it by a lottery. The execution of this command is described in Joshua

18:1–10 with no particulars regarding the actual lottery used. Rabbinical
sources16 describe it as a double lottery with two urns, one containing slips
with the names of the tribes, the other slips of the territories. Two young
priests stood by them and simultaneously picked pairs of slips from the two
urns, thus matching tribes with their territories.17 A similar method was
used in England until 1826 — a pictorial reproduction of this method can be
found in Raven (2016, Fig. 5.1).

The three draft lotteries A–C depicted above produce the same probabil-
ity distribution over matching dates of birth and the order of the draft — each
dob has probability 1/366 of being number i to be drafted, i = 1, . . . , 366.
But they have different structures. Lottery A is a 366-stage lottery, where at

12In fact there were only 365 capsules, but for the consistency of our analysis we modified
it to deal with leap years.

13The capsules were put in the drums in a random order, fully described in Rosenblatt
and Filliben (1971).

14This mechanism effectively randomizes the order at which subjects are playing the
“real” lottery. Preferences for such randomizations are expressed by Mr. Belmont in
Graham Greene’s Dr. Fischer of Geneva, or the Bomb Party.

15
Numbers 26:55–56 and 33:54.

16
Talmud Yerushalmi, Yoma 4:1 (41b) and Talmud Bavli, Bava Batra 122a.

17We found no hint that this source was known to those who designed the draft lottery,
nor that it was noted in the literature since. Fienberg (1971), in his discussion of the
Vietnam draft lotteries, mentions the biblical lottery, but not the rabbinical extended
story of the double barrels.
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stage i each person whose dob has not yet been selected is facing the lottery
“draft” with probability 1

367−i
and “continue to stage i+1” with probability

366−i
367−i

. Lottery B is a 62-stage lottery, where the first stage determines the
order of the six groups, and the remaining 61 steps are similar to the stages
of procedure A. Lottery C is also a 366-stage lottery. At stage i each per-
son whose dob is still in the urn is facing a lottery where with probability
1/(367− i)2 his dob is selected and matched with each of the 367− i ranking
numbers still in the urn, and with probability 366−i

367−i
he continues to the next

stage. Since these lotteries involve more than two outcomes they are not cov-
ered by the claims of our paper. But the fact that society is not indifferent
between them (procedure A was considered in retrospect inferior to C and
C was probably better than B) supports our main claim: The fact that two
social lotteries induce the same distribution over the allocation of the social
outcomes does not mean that participants are indifferent between them, and
consequentially, nor should society be indifferent to the choice of the random
mechanism.

6 Concluding remarks

A fundamental requirement of fairness is equal treatment of equals. When
random selection from equals is needed, this principal requires giving each
candidate an equal chance (see Taurek (1977) and Broome (1984,1998)).
But having a mechanism which is considered fair by the social planner may
not be enough. Members of society, too, should consider it fair and that it
treats all of them in an equal way, at least to the extent that no one will
believe that someone else was treated better than him.18 The fact that all
probabilities are equal does not imply that all individuals will consider the
mechanisms creating them as such and some mechanisms will be considered
to create more equal treatments than others. This argument is supported by
the experimental results of Eliaz and Rubinstein (2014). For example, they
asked subjects the following question.

One prize is to be awarded to one person from among 20 can-
didates. Compare the fairness (from the point of view of the

18We ignore here people preferences for equality (see e.g. Karni and Safra (2002)) and
consider only their selfish preferences not to feel discriminated.
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candidates) of the following procedures for selecting who will get
the prize.

(A) A computer program repeatedly draws a name at random,
and the prize is awarded to the first person whose name is
drawn twice.

(B) A computer program draws one of the names at random and
that person is awarded the prize.

Almost half of their subjects were not indifferent between (A) and (B).19 The
findings of Eliaz and Rubinstein are indeed not conclusive — 21% preferred
(A) to (B), 23% preferred (B) to (A), while 56% were indifferent.

The argument that having preferences over probabilistically-equivalent
procedures is irrational and that violations of probability theory may expose
decision makers to Dutch books (see de Finetti (1937) and Yaari (1985)) is
irrelevant. There is no point in using a “fair” mechanism unless it is deemed
fair by those who should bear its consequences. And if adding a green ball to
the urn, or having a names lottery rather than sequential draws, will make
people feel that the procedure is more fair, then so be it.

It is clear from our discussion that there is no one method that is obvi-
ously better than all other methods. For example, names lotteries are better
than the pre-ordered procedure when one person is to be selected, but not
necessarily when society wants to select two (or more) people. Some people
like, and some do not like possible manipulations of the procedure (e.g., by
adding winning balls). This is in agreement with the scant experimental ev-
idence and with the anecdotal literary evidence we mentioned. Nor do we
claim to exhaust the list of possible procedures. For example, one can think
of combinations of mechanisms where one method is used to create a short
list out of which the same or another mechanism will select some people.
Our main point is however established — all mechanisms are not the same.

19Unlike the lotteries of Figures 1 and 3, the compound lottery obtained from procedure
(A) is not a simple sequence of win/lose probabilities and therefore weak-poru cannot be
applied. Also, although this procedure terminates after at most n+1 draws, the obtained
multi-stage lottery lacks the elegant recursive form of the “two in a row” procedure (see
section 4.2).
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Appendix: Proofs

Proof of Lemma 1: By Segal (1987, Lemma 4.1), if the elasticity of h is
increasing, then h(p)h(q) 6 h(pq) and if it is decreasing, then h(p)h(q) >

h(pq).20

Assume u(y) = 0. For x > y, u(x) > 0 and the RD value of (x, pq; y, 1−
pq) is u(x)f(pq) while the value of ((x, p; y, 1−p), q; y, 1−q) is u(x)f(p)f(q).
For x < y, u(x) < 0 and the corresponding values of the above lotteries are
u(x)g(pq) and u(x)g(p)g(q). �

Proof of Lemma 2: h1(p) = p+p2

2
is convex with increasing elasticity,

h2(p) =
p+

√
p

2
is concave with increasing elasticity, h3(p) = 2p3 for p 6 1

2

and h3(p) = 3
2
p − 1

2
for p > 1

2
is convex with decreasing elasticity, and

h4(p) = sin(πp
2
) is concave with decreasing elasticity.

Suppose that the elasticity of h is increasing. We show first that under
the lemma’s assumptions, this implies that ηh > 1. Since h is increasing,
its first non-zero derivative at 0 must be positive. Let f (n+1)(0) = d > 0 =
f (n)(0) = . . . = f ′(0), where d < ∞. By l’Hôpital’s rule,

lim
p→0

ph′(p)
h(0)

= 1 + lim
p→0

ph′′(p)
h′(p)

= . . . = n+ lim
p→0

ph(n+1)(p)

h(n)(p)

= n+ d · lim
p→0

p

h(n)(p)
= n+ 1 > 1 (12)

Then

η′h > 0 ⇐⇒ h′h+ ph′′h− p[h′]2 > 0

⇐⇒ h′h[1− ph′

h
] > −ph′′h

By eq. (12), the lhs of the last inequality is negative, hence h′′ > 0.

The first non-zero derivative at zero of the above function h3 is finite, the
function is convex, yet its elasticity is decreasing. �

Proof of Claim 2: We prove the claim for f . Differentiate (7) with respect

20The statement of Lemma 4.1 in (1987) is wrong (it suggests an iff result). The proof
there only proves the above statement. Observe that we do not make assumptions regard-
ing the convexity or concavity of h.
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to i to obtain

1
(n−i+1)2
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n

)

f ′
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1
n−i+1

)

− 1
n
f ′
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f
(

1
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)

6 0 ⇐⇒
1

n−i+1
f ′
(

1
n−i+1

)

f
(

1
n−i+1

) 6

n−i+1
n

f ′
(

n−i+1
n

)

f
(

n−i+1
n

)

Clearly 1
n−i+1

6 n−i+1
n

iff i 6 i∗. Assuming increasing elasticity of f , the last
inequality therefore holds iff i 6 i∗. The proof for g is similar. �

Proof of Claim 3: For i 6 n − 1, the first i − 1 stages of Qi(n, 1) and
Qi+1(n, 1) are the same. The last two stages of Qi+1(n, 1) are

((1, 1
n−i

; 0, n−i−1
n−i

), n−i
n−i+1

; 0, 1
n−i+1

)

By weak-poru it is inferior to (1, 1
n−i+1

; 0, n−i
n−i+1

), which is the last stage of

Qi(n, 1). The proof of Q(n, n− 1) is similar. �

Proof of Claim 4: We prove the claim for P (n+1, 1). For all i > i0, person
i in P (n, 1) becomes person i+ 1 in P (n+ 1, 1). Using eq. (5), it follows by
first-order stochastic dominance that for person i > i0

P i(n, 1) =
((

1, 1
n−i+1

; 0, n−i
n−i+1

)

, n−i+1
n

; 0, i−1
n

)

≻
((

1, 1
n−i+1

; 0, n−i
n−i+1

)

, n−i+1
n+1

; 0, i
n+1

)

= P i+1(n+ 1, 1)

Also, P 1(n, 1) = (1, 1
n
; 0, n−1

n
) ≻ (1, 1

n+1
; 0, n

n+1
) = P 1(n+1, 1). The proof for

P (n+ 1, n) is similar. �

Proof of Claim 5: Let 1 < i < i0 and recall that the RD value of P i(n, 1)
is given by eq. (7). Its derivative with respect to n is

− 1
(n−i+1)2

f
(

n−i+1
n

)

f ′
(

1
n−i+1

)

+ i−1
n2 f

′
(

n−i+1
n

)

f
(

1
n−i+1

)

which is non-positive iff

i−1
n2 f

′
(

n−i+1
n

)

f
(

1
n−i+1

)

6 1
(n−i+1)2

f
(

n−i+1
n

)

f ′
(

1
n−i+1

)

⇐⇒

i−1
n

×
n−i+1

n
f ′

(
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n

)

f

(

n−i+1
n

) 6

1
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f ′
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)

f
(

1
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) ⇐⇒

i−1
n

6
ηf( 1
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ηf
(

n−i+1
n

)
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The proof for procedure P (n+ 1, n) is similar, starting with eq. (8). �

Proof of Claim 6: Suppose that P i(n, n − 1) � P i(n + 1, n). Observe
that the first i− 1 steps of the P i(n+ 1, n) and W i(n, n− 1) procedures are
equivalent (see Figure 6 for a graphical comparison of the two procedures.)
With probability i−1

n+1
one of the first i − 1 participants will pick the red

ball and the procedure will terminate with person i receiving the desired
outcome. In the second stage, in both procedures, person i draws a red ball
with probability 1

n−i+2
, he wins 0, and the procedure is over. The difference

between the two procedures arises when person i draws a green ball. In
the P procedure, he is selected and the procedure is over for him. In the
W procedure, he is selected when someone after him draws the red ball,
otherwise the procedure must be repeated. Since the continuation value of
the W procedure is less than the value of being selected, it follows that
P i(n+ 1, n) � W i(n, n− 1). Therefore P i(n, n− 1) � W i(n, n− 1).

P i(n+ 1, n) W i(n, n− 1)

1

1

1

1

00

W (n, n−1)

i−1
n+1

n−i+2
n+1

n−i+1
n−i+2

1
n−i+2

i−1
n+1

n−i+2
n+1

n−i+1
n−i+2

1
n−i+2

n−i
n−i+1

1
n−i+1

Figure 6: Procedures P i(n+ 1, n) and W i(n, n− 1) for person i

Suppose now that P i(n+1, n) ≻ P i(n, n−1). We show that it is possible
to have both relations between W i(n, n− 1) and P i(n, n− 1).

1. W i(n, n−1) ≻ P i(n, n−1): Consider RD preferences. let i∗ = n+1−√
n,

s = f
(

n−i
n−i+1

)

6 n−i
n−i+1

, r = f
(

i−1
n

)

= max{0, s +
(

i2−2(n+1)i+(n2+n+1)
n

)

(s −
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1)}, and let f be the piecewise linear function

f(p) =







nrp

i−1
p 6 i−1

n

n(1−r)p
n−i+1

+ nr−i+1
n−i+1

p > i−1
n

The function f is convex, increasing in n, and is such that individual i 6 i∗

prefers W i(n, n− 1) to P i(n, n− 1). By the first part of the claim it follows
that P i(n+ 1, n) ≻ P i(n, n− 1).

2. P i(n, n− 1) ≻ W i(n, n− 1): Consider again RD preferences with f(p) =
p2+p

2
. For n = 5 and i = 2 we get RD(P 2(6, 5)) = 0.7472 > RD(P 2(5, 4)) =

0.6975 > RD(W 2(5, 4)) = 0.6745. �

Proof of Claim 7: In his turn, person 1 picks a green ball with probability
2

n+1
and red with probability n−1

n+1
. In the former case, he wins 1 if no one else

picks a green ball (the probability of this event is 1
n
), or the procedure starts

over again. In the latter case he receives 0 if only one green ball is picked
by the rest (the probability of this event is 2

n
), otherwise the procedure is

repeated (see Figure 7).

W 1(n, 1)

1 W 1(n, 1) W 1(n, 1) 0

2
n+1

n−1
n+1

1
n

n−1
n

n−2
n

2
n

Figure 7: Procedure W 1(n, 1) for person 1

By first-order stochastic dominance the left branch is better than the
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right one. Denote s = RD(W 1(n, 1)), hence

s = (f( 1
n
) + s[1− f( 1

n
)])f( 2

n+1
) + sf(n−2

n
)[1− f( 2

n+1
)] =⇒

s =
f( 2

n+1
)f( 1

n
)

1− f( 2
n+1

) + f( 2
n+1

)f( 1
n
)− f(n−2

n
) + f( 2

n+1
)f(n−2

n
)

Recall that RD(P 1(n, 1)) = f( 1
n
) and substitute f(p) = pα to obtain that

W 1(n, 1) � P 1(n, 1) iff

(

2
n+1

)α
> 1−

(

2
n+1

)α
+
(

2
n2+n

)α −
(

n−2
n

)α
+
(

2n−4
n2+n

)α ⇐⇒

2α(nα − 1) > [nα − (n− 2)α][(n+ 1)α − 2α] (13)

For α < 1 the function nα is concave, therefore for n = 2, 2α = nα− (n− 2)α

and nα− 1 > (n+1)α− 2α. For α < 1, the derivatives of 2α− [nα− (n− 2)α]
and [nα−1]−[(n+1)α−2α] wrt n are positive, and inequality (13) is satisfied.
The proof for the case α > 1 is similar. �

Proof of Claim 8: Since N(n, 1) = P 1(n, 1) = P n(n, 1) � P i(n, 1), the first
claim follows immediately by Claim 1.

Procedure P i(n, n − 1) yields person i the lottery
((

0, 1
n−i+1

; 1, n−i
n−i+1

)

,
n−i+1

n
; 1, i−1

n

)

(see eq. (6)). By weak-poru,

((

0, 1
n−i+1

; 1, n−i
n−i+1

)

, n−i+1
n

; 1, i−1
n

)

=
((

0,
n−1
∏

j=i

n−j

n−j+1
; 1, 1−

n−1
∏

j=i

n−j

n−j+1

)

,
i−1
∏

j=1

n−j

n−j+1
; 1, 1−

i−1
∏

j=1

n−j

n−j+1

)

�

(

1, 1
n
;
(

1, 1
n−1

;
(

. . .
(

1, 1
2
; 0, 1

2

)

. . .
)

, n−2
n−1

)

, n−1
n

)

Which is the lottery obtained from procedure N(n, n− 1). �

Proof of Claim 9: Let A = RD(N(n, 2)) and B = RD(P i(n, 2)). Then

A = f
(

1
n

)

+ f
(

1
n−1

) [

1− f
(

1
n

)]

and by fnt. 2, B equals

f
(

2
n−i+1

)

f
(

(n−i+1)(n−i)
n(n−1)

)

+ f
(

1
n−i+1

)

[

f
(

1− (i−1)(i−2)
n(n−1)

)

− f
(

(n−i+1)(n−i)
n(n−1)

)]
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For f(p) = pα we get that B − A equals

(2α−1)(n−i)α

nα(n−1)α
+ 1

(n−i+1)α

[

1− (i−1)(i−2)
n(n−1)

]α

− 1
nα − 1

(n−1)α
+ 1

nα(n−1)α
> 0 ⇐⇒

(2α − 1)(n− i)α + (n+ i− 2)α − (n− 1)α − nα + 1 > 0

(Observe that (n − i + 1)(n + i − 2) = n(n − 1) − (i − 1)(i − 2)). The last
inequality holds since α > 1, 2α − 1 > 1, 1 < n− i < n− 1 < n < n+ i− 2,
and pα is a convex function.

To show that the claim does not hold for all convex functions f , let

f(p) =

{

0.1p p 6 0.75

3.7p− 2.7 p > 0.75

For n = 10 and i = 5 we get A = 0.021 > B = 0.009. �

Proof of Claim 10: The analysis depends on whether the selected person
receives a desired or an undesired outcome.

(i) The selected person wins a desired outcome. By FOSD, A ≻ B. By
eqs. (3) and (2), RD(T ) = f( 1

n
)u(A) + [1 − f( 1

n
)]u(B), u(A) = f( 1

n
) + [1 −

f( 1
n
)]u(B), and by fnt. 2

u(B) = f( 1
n
)u(A) + [f(n−1

n
)− f( 1

n
)]u(B)

= [f( 1
n
)]

2

+ [f(n−1
n
)− [f( 1

n
)]

2

]u(B) =⇒

u(B) =
[f( 1

n
)]

2

1− f(n−1
n
) + [f( 1

n
)]2

Substituting into the values of A and T we get

u(A) = f( 1
n
) +

[1− f( 1
n
)]× [f( 1

n
)]

2

1− f(n−1
n
) + [f( 1

n
)]2

RD(T ) = [f( 1
n
)]

2

+
[f( 1

n
) + 1]× [1− f( 1

n
)]× [f( 1

n
)]

2

1− f(n−1
n
) + [f( 1

n
)]2

=
[f( 1

n
)]

2
[2− f(n−1

n
)]

1− f(n−1
n
) + [f( 1

n
)]2
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Recall that RD(N(n, 1)) = f( 1
n
), hence RD(T ) 6 RD(N(n, 1)) iff

f( 1
n
)[2− f(n−1

n
)]

1− f(n−1
n
) + [f( 1

n
)]2

6 1 ⇐⇒

f( 1
n
)[1− f( 1

n
)] + f( 1

n
)[1− f(n−1

n
)] 6 1− f(n−1

n
) ⇐⇒

f( 1
n
) + f(n−1

n
) 6 1

which is the case whenever f is convex.

(ii) The selected person wins an undesired outcome. By FOSD, B ≻ A.
By eqs. (3) and (4), RD(T ) = f(n−1

n
)u(B) + [1 − f(n−1

n
)]u(A), u(A) =

f(n−1
n
)u(B), and

u(B) = f( 1
n
) + [f(n−1

n
)− f( 1

n
)]u(B) + [1− f(n−1

n
)]u(A)

= f( 1
n
) + [f(n−1

n
)− f( 1

n
)]u(B) + [1− f(n−1

n
)]f(n−1

n
)u(B) =⇒

u(B) =
f( 1

n
)

1− 2f(n−1
n
) + f( 1

n
) + [f(n−1

n
)]2

Substituting into the values of A and T we get

u(A) =
f( 1

n
)f(n−1

n
)

1− 2f(n−1
n
) + f( 1

n
) + [f(n−1

n
)]2

RD(T ) =
f( 1

n
)f(n−1

n
) + f( 1

n
)f(n−1

n
)[1− f(n−1

n
)]

1− 2f(n−1
n
) + f( 1

n
) + [f(n−1

n
)]2

=
f( 1

n
)f(n−1

n
)[2− f(n−1

n
)]

1− 2f(n−1
n
) + f( 1

n
) + [f(n−1

n
)]2

Recall that now RD(N(n, 1)) = f(n−1
n
) (the selected person wins the unde-

sired outcome), hence RD(T ) 6 RD(N(n, 1)) iff

f( 1
n
)[2− f(n−1

n
)]

1− 2f(n−1
n
) + f( 1

n
) + [f(n−1

n
)]2

6 1 ⇐⇒

2f( 1
n
)− f( 1

n
)f(n−1

n
) 6 1− 2f(n−1

n
) + f( 1

n
) + [f(n−1

n
)]

2 ⇐⇒
[f( 1

n
) + f(n−1

n
)][1− f(n−1

n
)] 6 1− f(n−1

n
)

Which, again, is the case whenever f is convex. �
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