SEQUENTIAL BIDDING IN ASYMMETRIC FIRST PRICE AUCTIONS

By

Gal Cohensius and Ella Segev

September 8, 2015

RESEARCH INSTITUTE FOR ECONOMETRICS
DISCUSSION PAPER NO. 6-15

DEPARTMENT OF ECONOMICS
BAR-ILAN UNIVERSITY
RAMAT-GAN 5290002, ISRAEL

http://econ.biu.ac.il/en/node/2473
Sequential bidding in asymmetric first price auctions

Gal Cohensius* Ella Segev††

September 8, 2015

Abstract

We study asymmetric first price auctions in which bidders place their bids sequentially, one after the other and only once. We show that with a strong bidder and a weak bidder already with some asymmetry between the bidders, the expected revenue in the sequential bidding first price auction (when the strong bidder bids first) may be higher than in the simultaneous bidding first price auction as well as second price auction. The expected payoff of the weak bidder is also higher in the sequential first price auction. Therefore a seller interested in increasing revenue facing asymmetric bidders may find it beneficial to order them and let them bid sequentially instead of simultaneously. In terms of efficiency the sequential bidding auction when the stronger bidder bids first achieves lower efficiency than the simultaneous auction. However, when the order is reversed and the asymmetry is large enough the sequential first price auction achieves higher efficiency than the simultaneous auction. Finally we show that there exist no monotonicity in the number of bidders in the sequential bidding auction and discuss the optimal order of bidders.

Keywords: Sequential bidding, asymmetric auctions, first price auction, second price auction.

JEL classification: D44

1 Introduction

The question of designing an auction mechanism that will ensure high revenue for the seller when bidders have private information on their valuation of the object and are ex ante asymmetric, has long been an open question. Even the more restricted question of finding equilibrium behavior and then ranking different known auctions according to their expected revenue is still unresolved in the general asymmetric case. We cannot even determine under what conditions will a first price auction (FPA) yield a higher expected revenue than

*Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, email: galcohensis@gmail.com
†Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, email: ellasgv@bgu.ac.il
††Financial support from the Research Institute for Econometrics at Bar-Ilan University is greatly appreciated. We thank Yoav Kerner for his help in producing figure 6. We also thank Paul Schweinzer, Anna Rubinchik, Gabrielle Gayer and Todd Kaplan for helpful comments.
a second price auction (SPA) when bidders are asymmetric.1 Partial results exist for different assumptions on the distribution of bidders values.

Here we propose a simple modification of the first price auction in which bidders bid sequentially and only once. We order the bidders according to some order and bidder i observes the bids of previous bidders $1, \ldots, i-1$ when she places her own bid. As in the standard first price auction, the winner is the bidder who submitted the highest bid and she pays her bid. All other bidders have a payoff of zero. We break ties in favor of later bidders. Thus bidder i wins if her bid is higher than or equal to the bids of bidders $1, \ldots, i-1$ and strictly higher than the bids of bidders $i+1, \ldots, n$. For the two bidders case, even with small asymmetry between bidders, we show that by ordering the bidders such that the strong bidder bids first and the weak bidder bids only after the strong bidder does2, we increase both the weak bidder’s expected payoff and the expected revenue compared to the simultaneous auction.

Asymmetry between bidders is common in many auctions. For example when one of the bidders is an incumbent firm while the other is an entrant firm it is plausible to assume asymmetry in their valuations for the object (which can be a result of differences in the cost function). Another source for asymmetry may be the seller’s preferences over the bidders. In procurement auctions for example it is common that one seller is given an advantage over the other, reflecting better reliability or quality. Legal interventions that are intended for encouraging the participation of the weaker firm or preferred seller, such as bidding credits and set-asides are prevalent. We know from Myerson (1981) how does the optimal auction when bidders are asymmetric look like. However, this mechanism requires setting different reserve prices for the bidders which is considered a blunt intervention in favor of the weak bidder and mostly prohibited by law. Moreover the efficiency (the probability that the higher valuation bidder wins the object) of the optimal auction is very low. Our mechanism requires what may be considered a reasonable affirmative action in favor of the weak bidder - giving her the right to bid second. Moreover, as we show below, this mechanism yields a higher efficiency than the optimal one.3

Our results indicate that already with some asymmetry the weaker firm should be given the opportunity to bid after the stronger firm bids.4 This not only improves the expected payoff of the weaker firm and therefore may increase participation of weaker firms, but also increases the expected revenue for the seller. In most common auctions bidders bid simultaneously or equivalently without knowing the bids of their opponents. However, in several settings the seller may approach the bidders one by one creating a sequential

\begin{itemize}
\item 1Examples exist for both directions - a first price auction may either yield a higher or a lower expected revenue than a second price auction but no sufficient conditions are yet known for either of the directions.
\item 2Formally we say that bidder i is stronger than bidder j if the distribution of her valuation, F_i, first order stochastically dominates the distribution of bidder j’s valuation - F_j.
\item 3Deb and Pai (2014) show that almost every outcome of every auction mechanism can be implemented by a symmetric (anonymous) mechanism. This is also true for our mechanism except for the special case where the strong bidder’s valuation is drawn from a uniform distribution on an interval twice as large as the interval for the weak bidder.
\item 4Note that when bidders are symmetric our sequential mechanism does not yield the efficient allocation and therefore yields lower revenue than the revenue which is achieved by a standard FPA or SPA.
\end{itemize}
bidding game if she discloses the bids of previous bidders. Thus our motivation for studying sequential bidding FPA is a normative one. It does not stem from an existing practice (we are not aware of such a practice) but from the theoretical understanding that altering the common practice to the sequential one may improve its performance.

Remarkably, the dynamic nature of bidding in the sequential bidding auction makes the game more tractable and as a result makes it simple to find the perfect Bayesian equilibrium for general distributions and a general number of bidders. This is yet another advantage of the sequential FPA over the simultaneous one where it is extremely difficult to find equilibrium behavior and analyze how will changes in the mechanism (such as handicaps or headstarts) affect the bidders’ behavior. We therefore suggest that sequential mechanisms be used when bidders are asymmetric to allow for higher revenue, higher participation of weaker bidders and easier prediction of expected behavior. Note moreover that even if the seller does not know the distributions of the bidders’ valuations but only that they are asymmetric such that one is strong and the other is weak our results suggest that by ordering them such that the strong bidder bids first she will almost always ensure a higher revenue than by a simultaneous auction.

We also examine the efficiency of the sequential first price auction. Efficiency is defined as the probability that the higher valuation bidder wins the object. When the bidders are asymmetric simultaneous first price auction does not guarantee full efficiency. This happens because in equilibrium the weaker bidder bids more aggressively than the stronger one (does less shading down of her valuation) and therefore may win even if her valuation is lower than that of the stronger bidder. This is true also for the sequential first price auction. In the sequential auction the second bidder has an exogenous advantage of observing the first bid and being able to win by placing the same bid as the first bidder. Therefore, the second bidder may win although she has a lower valuation than the first one. We show that when the stronger bidder bids first the efficiency is lower compared to the simultaneous auction. However, when the order is reversed and the asymmetry between bidders is high enough the efficiency in the sequential auction is higher than in the simultaneous one.

There are only very few analytic solutions to the equilibrium bids in a simultaneous FPA with asymmetric bidders and all of them are restricted to two bidders. Thus our comparison will be restricted to cases in which we could analytically solve for the equilibrium bids in the simultaneous auction. We use results by Maskin and Riley (2000) and by Kaplan and Zamir (2012) in two different scenarios of asymmetry between two bidders. In the first scenario, stretch of probabilities, bidder 2’s valuation is uniformly distributed on the interval \([0, c]\) (the weak bidder) while bidder 1’s valuation is stretched to the right and is uniformly distributed on the interval \([0, c + \varepsilon]\) (the strong bidder). In the second scenario, shift of probabilities, bidder 2’s valuation is again uniformly distributed on the interval \([0, c]\) (the weak bidder) while bidder 1’s valuation is shifted to the right and is uniformly distributed on the interval \([\varepsilon, c + \varepsilon]\) (the strong bidder). In both cases Maskin and Riley (2000) prove that a FPA yields a higher expected revenue than a SPA and Kaplan and Zamir (2012) specify the inverse bid functions of the bidders. We show that when asymmetry is high enough...
(ε gets larger) a sequential bidding first price auction dominates both FPA and SPA and generates higher expected revenue.

Finally we compare the expected payoff of each of the bidders in each of the auctions and show that the ex ante expected payoff of the strong bidder is highest in the simultaneous FPA, second highest in the SPA and lowest in the sequential FPA while for the weaker bidder the order is reversed. A weak bidder prefers the sequential auction where she bids second over the simultaneous auction. Therefore a sequential first price auction may serve as a tool to increase participation of weak bidders.

Much effort has been put in the last two decades in finding equilibrium behavior in asymmetric auctions and ranking FPA and SPA in terms of revenue. Tanno (2009) proposes a necessary and sufficient condition for the existence of linear bid in the equilibrium of the asymmetric first-price auctions with two bidders and uniform distributions. Doni and Menicucci (2013) compare the expected revenue in FPA and SPA with discrete valuations with binary support. They prove that for a large set of parameters the SPA yields higher expected revenue than the FPA. Fibich, Gavious and Sela (2004) show that the difference between the expected revenue in FPA and SPA might be very small when all distributions of the bidders’ valuations are on the same support and are perturbations of a common distribution. Gavious and Minchuk (2014) consider “close to uniform” distributions with identical support and show that the expected revenue in SPA may exceed that in FPA. Hubbard, Kirkegaard and Paarsch (2013) discuss numerical approximations to equilibrium behavior in asymmetric FPA. Kirkegaard (2009) suggests a new approach to examining equilibrium bids in FPA. This approach leads to identifying necessary conditions for the bid functions of the bidders to have either no crossings or a unique crossing. Kirkegaard (2011) generalizes Maskin and Riley (2000) results and identifies sufficient conditions on the distribution functions that ensure that a FPA yields higher expected revenue than a SPA. Kirkegaard (2014) proves that FPA remains optimal (over SPA) when the weak bidder’s distribution falls between a shift and a stretch of the strong bidder’s distribution. Mares and Swinkels (2014) define and discuss the connection between the ρ-concavity of the underlying type distributions and the bidders’ bid functions. They are able to determine bounds on the equilibrium behavior in asymmetric auctions.

Not much effort has been devoted to examining auctions in which bidders bid one by one and only once. Fischer et al (2014) study a very similar model to ours. They assume an exogenous probability of a leak which is the probability that the second bidder will observe the first bidder’s bid. When this probability is 1 their model coincides with ours. However they only assume symmetric bidders and therefore show (both theoretically and in an experiment) that the sequential bidding game yields less revenue than the simultaneous game. Roberts and Sweeting (2013) study a sequential bidding auction with an entry cost. In their model bidders learn their private valuations only after they decide to enter and pay the entry fee and bids can only be increased by a giving jump each round. The entry decision is therefore dependent on the entry decision of previous bidders and the bidder’s own signal. They show that a sequential mechanism can give both buyers and sellers significantly higher payoffs than the commonly used simultaneous bid auction. In an
earlier work, Segev and Sela (2014a) suggest a similar modification for the all-pay auction and find the perfect Bayesian equilibrium of the sequential all-pay auction. However, they do not compare the expected revenue to expected revenue in the simultaneous all-pay auction. Linster (1993) studied Stackelberg rent seeking games in the form of Tullock contests where players move sequentially. He defined the perfect Bayesian equilibrium and compared the results with that of a simultaneous Tullock contest. Morgan (2003) studies sequential Tullock contests as well with incomplete information and symmetric distributions. He shows that the sequential contest may yield higher expected revenue than the simultaneous one. Finally, Ludwig (2006) compares sequential and simultaneous Tullock contests with complete and incomplete information and symmetric players. She allows for correlation between the players’ types and finds that the seller prefers sequential over simultaneous contests when he aims at maximizing the expected effort sum. Moreover, the contestants may prefer sequential contests, too. Another related literature is the literature on the right of first refusal (ROFR). In this literature it is assumed that a buyer wishes to buy a good from a set of sellers and may grant one of them the right to first refusal meaning that after all sellers offer a price she may observe all prices and win by bidding the lowest bid. Brisset, Cochard and Marechal (2012) consider such an auction with \(n \) symmetric risk averse sellers and determine the conditions under which the buyer has an incentive to grant a supplier a right of first refusal. Arozamena and Weinschelbaum (2009 a,b) consider the right of first refusal to be corruption and examine the conditions under which it maximizes the sum of the buyer and preferred seller’s (the one who gets the ROFR) payoffs. Finally Lee (2008) considers two asymmetric bidders and show that it may be beneficial for the buyer to grant one of them the right of first refusal.

2 The Model

We consider a sequential bidding first price auction with \(n \geq 2 \) bidders who bid for a single indivisible object. Bidders bid one by one. Bidder \(j, 1 \leq j \leq n \) observes the bids of bidders \(1, 2, \ldots, j-1 \) and then places a bid \(b_j \). The winner is the bidder who placed the highest bid. We break ties in favor of later bidders. Thus, bidder \(j \) wins if her bid is larger than or equal to the bids of bidders \(1, \ldots, j-1 \) and strictly larger than the bids of bidders \(j+1, \ldots, n \). Bidder \(j \)’s valuation of the object is denoted by \(v_j \) and is private information to bidder \(j \). It is common knowledge among the bidders that bidder \(j \)’s valuation \(v_j \) is drawn from a continuous and twice differentiable distribution \(F_j \) with a positive density function \(f_j \) on the interval \([a_j, c_j]\), \(0 \leq a_j < c_j \). We also assume that \(F_j \) has no atom at \(a_j \).\(^5\) Our aim is to characterize the perfect Bayesian equilibrium bid strategies of the bidders.

We start by analyzing bidder \(n \)’s behavior. Bidder \(n \) observes the bids of bidders \(1, \ldots, n-1 \). Let

\[
\gamma_n = \max_{1 \leq i \leq n-1} b_i
\]

be the maximal bid of bidders \(1, \ldots, n-1 \). Bidder \(n \) will then either bid \(\gamma_n \), if \(v_n \geq \gamma_n \) or otherwise will bid zero. Therefore, if \(c_n \leq \gamma_n \) then bidder \(n \) bids zero: \(b_n(v_n; b_1, \ldots, b_{n-1}) = 0 \) for all

\(^5\)An atom at \(a_j \) may create discontinuity in the bidders \(1, \ldots, j-1 \) maximization problem and may lead to a case where no perfect Bayesian equilibrium exists.
\(a_n \leq v_n \leq c_n \). If \(\gamma_n \leq a_n \) then bidder \(n \) bids \(\gamma_n \) for all \(a_n \leq v_n \leq c_n \). Finally, if \(a_n < \gamma_n < c_n \) then,

\[
 b_n(v_n; b_1, \ldots, b_{n-1}) = \begin{cases}
 0 & \text{if } a_n \leq v_n < \gamma_n \\
 \gamma_n & \text{if } \gamma_n \leq v_n \leq c_n
 \end{cases}
\]

(1)

Bidder \(n - 1 \) considers the probability that bidder \(n \) will bid zero which is her probability of winning. If she bids less than \(a_n \) then her payoff is zero. Otherwise, her maximization problem is given by

\[
\max_{a_n \leq b} \{ F_n(b)(v_{n-1} - b) \}
\]

s.t. \(b \geq \gamma_{n-1} \)

where \(\gamma_{n-1} = \max_{1 \leq i \leq n-2} b_i \) is the maximal bid of bidders 1, ..., \(n-2 \).

We need to consider several cases. First, if \(c_{n-1} \leq a_n \) then bidder \(n - 1 \) can never ensure a positive payoff. In the following we assume that in this case bidder \(n - 1 \) bids zero. Obviously she could bid any positive bid smaller than \(a_n \) and get the same payoff but we want to identify the PBE with the smallest possible expected revenue for the sequential auction and therefore assume she bids zero. Thus, whenever \(v_{n-1} \leq a_n \) we have \(b_{n-1}(v_{n-1}) = 0 \) and the same will be true to any other bidder who knows that her probability of winning is zero.

The first order condition for the maximization problem is given by

\[
f_n(b)(v_{n-1} - b) - F_n(b) = 0
\]

or equivalently we can derive the inverse bid function as

\[
v_{n-1} = b + \frac{F_n(b)}{f_n(b)}
\]

We define the function \(\Phi_n(x) = x + \frac{F_n(x)}{f_n(x)} \). We need the following condition on \(F_n \).

Definition 1 A continuous and twice differentiable distribution function \(F \) with a positive density \(f \) on the interval \([a, c]\) is said to be sequentially regular (SeqR) if the following function

\[
\Phi_F(x) = x + \frac{F(x)}{f(x)}
\]

(3)

is strictly increasing on the interval \([a, c]\).

In the following we assume that the distribution \(F_n \) of bidder \(n \)'s valuation is sequentially regular. This will allow us to define the bid function of bidder \(n - 1 \) which is the inverse function of \(\Phi_{F_n}(x) \). Note that if a distribution is a convex function and sequentially regular then it is also regular in terms of the Myerson’s (1981) condition (a distribution is regular if the virtual valuation \(\Psi(x) = x - \frac{1-F(x)}{f(x)} \) is a strictly increasing function).\(^6\) Moreover, if \(F(x) \) is concave then it is trivially sequentially regular. Finally, note that for bidder \(i, \Phi_{F_i}(a_i) = a_i \) and \(\Phi_{F_i}(c_i) = c_i + \frac{1}{f_i(c_i)} \).

\(^6\)Since if \(\Phi(x) = \Psi(x) + \frac{1}{f(x)} \) is strictly increasing then \(\frac{d}{dx} \Phi(x) = \frac{d}{dx} \Psi(x) - \frac{f'(x)}{(f(x))^2} > 0 \) and the convexity of \(F(x) \) implies \(\frac{d}{dx} \Psi(x) > \frac{f'(x)}{(f(x))^2} > 0 \).
Since $b_{n-1}(v_{n-1}) = 0$ for all $v_{n-1} \leq \gamma_{n-1}$ while $b_{n-1}(v_{n-1}) > 0$ for $v_{n-1} > \gamma_{n-1}$ if $\gamma_{n-1} \geq a_n$ then bidder $n - 2$ wins by bidding $b > \max\{a_n, a_{n-1}\}$ only if $v_{n-1} < b$ and $v_n < b$ and this will remain true for any bidder. Therefore bidder j’s maximization problem is given by

$$\max_b \left\{ \prod_{i=j+1}^{n} F_i(b) (v_j - b) \right\} \quad \text{s.t.} \quad b \geq \gamma_j$$

where $\gamma_j = \max_{1 \leq i \leq j-1} b_i$ and F_i are defined on $[\min_{1 \leq i \leq n} a_i, \max_{1 \leq i \leq n} c_i]$ such that $F_i \equiv 0$ on $[\min_{1 \leq i \leq n} a_i, a_i]$ and $F_i \equiv 1$ on $[c_i, \max_{1 \leq i \leq n} c_i]$. Note that $G_j(x) = \prod_{i=j+1}^{n} F_i(x)$ is a continuous (but not necessarily twice differentiable) distribution function on $[\min_{j+1 \leq i \leq n} a_i, \max_{j+1 \leq i \leq n} c_i]$ with a positive density function on its support. We would need the following assumption on the distribution functions F_1, \ldots, F_n: the function $G_j(x)$ is sequentially regular on the interval $[\min_{1 \leq i \leq n} a_i, \max_{1 \leq i \leq n} c_i]$ for every $1 \leq j \leq n - 1$.

In the following we solve explicitly for two bidders and in section 4 we analyze some results for more than two bidders.

Proposition 1 The following is a perfect Bayesian equilibrium (PBE) of the sequential bidding first price auction with two bidders if F_2 is sequentially regular. If $b_1 \leq a_2$ then $b_2(v_2; b_1) = b_1$ for $a_2 \leq v_2 \leq c_2$. Otherwise

$$b_2(v_2; b_1) = \begin{cases} 0 & \text{if } a_2 \leq v_2 < \min\{b_1, c_2\} \\ b_1 & \text{if } \min\{b_1, c_2\} \leq v_2 \leq c_2 \end{cases}$$

If $c_1 \leq a_2$ then $b_1(v_1) = 0$. If $a_2 \leq a_1$ and $a_1 \leq \Phi_{F_2}(c_2)$ then

$$b_1(v_1) = \begin{cases} \max\{0, \Phi_{F_2}^{-1}(v_1)\} & \text{if } a_1 \leq v_1 \leq \min\{\Phi_{F_2}(c_2), c_1\} \\ c_2 & \text{if } \min\{\Phi_{F_2}(c_2), c_1\} \leq v_1 \leq c_1 \end{cases}$$

If $\Phi_{F_2}(c_2) \leq a_1$ then

$$b_1(v_1) = c_2 \quad \text{for all } a_1 \leq v_1 \leq c_1$$

Finally, if $a_1 < a_2$ then

$$b_1(v_1) = \begin{cases} 0 & \text{if } a_1 \leq v_1 < a_2 \\ \max\{0, \Phi_{F_2}^{-1}(v_1)\} & \text{if } a_2 \leq v_1 \leq \min\{\Phi_{F_2}(c_2), c_1\} \\ c_2 & \text{if } \min\{\Phi_{F_2}(c_2), c_1\} \leq v_1 \leq c_1 \end{cases}$$

Proof. Bidder 2 best responds to bidder 1’s behavior since he places the same bid as bidder 1 whenever it is below his valuation. Bidder 1 solves the maximization problem (2). This together with the assumption that if $v_1 \leq a_2$ then bidder 1 bids zero since she cannot ensure any positive payoff given bidder 2’s strategy (as explained above), gives us the described PBE. ■
Using proposition 1 we can express the expected revenue of the seller in this PBE. Note that with only two bidders the expected revenue of the seller is equal to the expected bid of the first bidder (the second bidder either places the same bid or bids zero. Therefore the expected revenue of the seller is given by

\[R_{seq}^{FPA} = \begin{cases}
0 & \text{if } c_1 \leq a_2 \\
\int_{a_1}^{c_1} \left(\max \{0, \Phi_{F_2}^{-1}(v_1)\} \right) f_1(v_1) dv_1 & \text{if } a_2 \leq a_1 < c_1 \leq \Phi_{F_2}(c_2) \\
\Phi_{F_2}(c_2) \left(\max \{0, \Phi_{F_2}^{-1}(v_1)\} \right) f_1(v_1) dv_1 + c_2 \left(1 - F_1(\Phi_{F_2}(c_2)) \right) & \text{if } a_2 \leq a_1 < \Phi_{F_2}(c_2) \leq c_1 \\
\int_{a_2}^{c_2} \left(\max \{0, \Phi_{F_2}^{-1}(v_1)\} \right) f_1(v_1) dv_1 & \text{if } a_1 < a_2 \leq c_1 - \Phi_{F_2}(c_2) \\
\Phi_{F_2}(c_2) \left(\max \{0, \Phi_{F_2}^{-1}(v_1)\} \right) f_1(v_1) dv_1 + c_2 \left(1 - F_1(\Phi_{F_2}(c_2)) \right) & \text{if } a_1 < a_2 < \Phi_{F_2}(c_2) \leq c_1 \\
\end{cases} \]

The following example is with uniform distributions and it applies to the first two scenarios we examine below.

Example 1 Assume that \(v_1 \) is uniformly distributed on \([a_1, c_1]\) and \(v_2 \) is uniformly distributed on \([a_2, c_2]\) then \(F_2 \) is sequentially regular and \(\Phi_{F_2}(x) = 2x - a_2 \) and \(\Phi_{F_2}^{-1}(x) = \frac{1}{2} (x + a_2) \). Therefore, for any \(v_1 \) we have \(\max \{0, \Phi_{F_2}^{-1}(v_1)\} = \frac{1}{2} (v_1 + a_2) \) and then

\[R_{seq}^{FPA} = \begin{cases}
0 & \text{if } c_1 \leq a_2 \\
\frac{1}{2} (a_2 + a_2 + c_1) & \text{if } a_2 \leq a_1 < c_1 \leq 2c_2 - a_2 \\
\frac{1}{4(c_1 - a_1)} \left(4c_2 (a_2 + c_1 - c_2) - (a_1 + a_2)^2 \right) & \text{if } a_2 \leq a_1 < 2c_2 - a_2 \leq c_1 \\
\frac{1}{4(c_1 - a_1)} (c_1 - a_2) (3a_2 + c_1) & \text{if } a_2 < 2c_2 - a_2 \leq a_1 < c_1 \\
\frac{1}{c_1 - a_1} ((a_2 + c_1) c_2 - a_2^2 - c_2^2) & \text{if } a_1 < a_2 \leq c_1 \leq 2c_2 - a_2 \\
\frac{1}{c_1 - a_1} ((a_2 + c_1) c_2 - a_2^2 - c_2^2) & \text{if } a_1 < a_2 < 2c_2 - a_2 \leq c_1 \\
\end{cases} \]

In the next section we use the above results to compare the expected revenue in the PBE of the sequential bidding first price auction with the expected revenue of a simultaneous bidding first price and second price auctions. We follow Maskin and Riley (2000) and examine two cases of asymmetry while using Kaplan and Zamir (2012) to derive the explicit bidding functions of the bidders. In both cases we have a strong bidder and a weak bidder. We say that a bidder is stronger than another bidder if the distribution from which her valuation is drawn, first order stochastically dominates that of the other. When examining the sequential bidding auction we would therefore first need to determine what is the optimal (in terms of the seller’s revenue) order of the bidders.

3 Ranking the auctions

For simultaneous bidding first price auction there are only limited results for the Bayesian equilibrium behavior of bidders. Kaplan and Zamir (2012) find the equilibrium behavior of two bidders with uniform distributions and general supports. Therefore we restrict attention to uniform distributions in order to be
able to derive an explicit expression for the expected revenue in the Bayesian equilibrium of the simultaneous FPA.

3.1 Stretch of probabilities

Assume that \(F_1 \) is a uniform distribution on \([0, c + \varepsilon]\), for \(\varepsilon > 0 \) while \(F_2 \) is uniform on \([0, c]\). Bidder 1 is therefore the strong bidder. If bidder 1 bids first then we have

\[
R^{FPA}_{seq}(1, 2) = \begin{cases} \frac{1}{4} (c + \varepsilon) & \text{if } 0 \leq \varepsilon \leq c \\ \frac{c}{c + \varepsilon} & \text{if } c \leq \varepsilon \end{cases}
\]

while if bidder 1 bids second then

\[
R^{FPA}_{seq}(2, 1) = \frac{1}{4} c
\]

Therefore the optimal order (in terms of expected revenue) is when the stronger bidder bids first. We thus assume in the following that we are able to determine the order of the bidders and we let the weaker bidder bid second. Then we have

\[
R^{FPA}_{seq} = \begin{cases} \frac{1}{4} (c + \varepsilon) & \text{if } 0 \leq \varepsilon \leq c \\ \frac{c}{c + \varepsilon} & \text{if } c \leq \varepsilon \end{cases}
\]

We use Kaplan and Zamir (2012) to derive the equilibrium bid function of the simultaneous bid FPA. The inverse bid functions, \(v_1 (b) \) and \(v_2 (b) \) solve the following set of differential equations:

\[
\frac{f_2 (v_2 (b))}{F_2 (v_2 (b))} v_2' (b) = \frac{1}{v_1 (b) - b} \quad (4)
\]

\[
\frac{f_1 (v_1 (b))}{F_1 (v_1 (b))} v_1' (b) = \frac{1}{v_2 (b) - b}
\]

with the following boundary conditions: \(v_1 \left(\frac{c (c + \varepsilon)}{2c + \varepsilon} \right) = c + \varepsilon \) and \(v_2 \left(\frac{c (c + \varepsilon)}{2c + \varepsilon} \right) = c \) and \(v_1 (0) = v_2 (0) = 0 \).

Therefore we have

\[
b_1 (v) = \frac{c (c + \varepsilon) \left(-c (c + \varepsilon) + \sqrt{c^2 (c + \varepsilon)^2 + \varepsilon (c + 2c) v^2} \right)}{\varepsilon (c + 2c) v}
\]

\[
b_2 (v) = \frac{c (c + \varepsilon) \left(c (c + \varepsilon) - \sqrt{c^2 (c + \varepsilon)^2 - \varepsilon v^2 (c + 2c)} \right)}{\varepsilon v (c + 2c)}
\]

Note that for every \(v \in [0, c] \) we have \(b_2 (v) > b_1 (v) \). The weaker bidder bids more aggressively in the equilibrium of the simultaneous FPA. In order to find the expected revenue of the seller in the simultaneous FPA we define the random variable of the winning bid \(P \). This random variable is distributed on \([0, \frac{c (c + \varepsilon)}{2c + \varepsilon}]\) according to the following distribution function

\[
G (p) = \Pr \{ \max \{ b_1 (v), b_2 (v) \} \leq p \} = F_1 (v_1 (p)) F_2 (v_2 (p))
\]

9
with a positive density function $g(p)$. Therefore we have

$$R_{sim}^{SPA} = \int_{0}^{c} pg(p) \, dp$$

$$= \frac{c^2}{2} (\varepsilon + c)^2 \left(\ln \left(\frac{\varepsilon + 2c - \sqrt{\varepsilon (\varepsilon + 2c)}}{\varepsilon + 2c + \sqrt{\varepsilon (\varepsilon + 2c)}} \right) + 2 \arctan \left(\sqrt{\frac{\varepsilon}{\varepsilon + 2c}} \right) \right) + \frac{c(\varepsilon + c)}{2} \frac{\varepsilon + 2c}{\varepsilon + 2c}$$

In the SPA the bidders bid their valuation and then the random variable P (of the winning bid) is distributed on $[0, \varepsilon]$ with the following distribution function

$$K(p) = Pr(\min\{v_1, v_2\} \leq p) = \frac{(\varepsilon + 2c - p)}{c(\varepsilon + c)}$$

and a density function

$$k(p) = \frac{\varepsilon + 2c - 2p}{c(\varepsilon + c)}$$

and therefore

$$R_{SPA}^{SPA} = \int_{0}^{c} pk(p) \, dp = \frac{1}{6} \frac{3\varepsilon + 2c}{\varepsilon + c}$$

Finally we also compare with the optimal auction that was derived by Myerson (1981). Since the distribution functions are regular, the optimal allocation rule is such that a bidder gets the object if her virtual valuation is the highest and is positive. Therefore, bidder 1 gets the object if $\Psi_1(v_1) = v_1 - \frac{1 - F_1(v_1)}{F_1(v_1)} \geq v_2 - \frac{1 - F_2(v_2)}{F_2(v_2)} = \Psi_2(v_2)$ or equivalently $v_1 \geq v_2 + \frac{1}{2} \varepsilon$ and moreover $\Psi_1(v_1) \geq 0 \iff v_1 \geq \frac{1}{2} (c + \varepsilon) = r_1$. Bidder 2 gets the object if $v_2 \geq v_1 - \frac{1}{2} \varepsilon$ and moreover $v_2 \geq \frac{1}{2} c = r_2$. Otherwise the seller keeps the object. Only the winning bidder pays and she pays the smallest value that will result in her winning (the highest among the virtual value of the other player and the reserve price r_i). We therefore have

$$R_{OPT} = \int_{0}^{c} \left(\int_{\max\{\frac{1}{2} c, v_1 - \frac{\varepsilon}{2}\}}^{c} \left(\max\left\{ \frac{1}{2} c, v_1 - \frac{\varepsilon}{2} \right\} \right) \frac{1}{c} \, dv_2 \right) \frac{1}{c + \varepsilon} \, dv_1$$

$$+ \int_{\frac{1}{2} c + \varepsilon}^{c} \left(\int_{\max\{\frac{1}{2} c, v_1 - \frac{\varepsilon}{2}\}}^{c} \left(\max\left\{ \frac{1}{2} c + \varepsilon, v_2 + \frac{\varepsilon}{2} \right\} \right) \frac{1}{c} \, dv_2 \right) \frac{1}{c + \varepsilon} \, dv_1 = \frac{1}{24} \frac{15c\varepsilon + 6\varepsilon^2 + 10c^2}{c + \varepsilon}$$

We are now ready to compare the auctions in terms of expected revenue. We already know from Maskin and Riley (2000) that the expected revenue from the second price auction is always lower than the expected revenue from the simultaneous first price auction. In other words $R_{SPA}^{SPA}(\varepsilon) < R_{sim}^{SPA}(\varepsilon)$. We have the following two propositions

Proposition 2 For every c, there exists a cut-off $0 < \varepsilon^*(c) \leq c$ such that for all $\varepsilon < \varepsilon^*(c), R_{sim}^{SPA} > R_{seq}^{SPA}$ and for all $\varepsilon > \varepsilon^*(c), R_{sim}^{SPA} < R_{seq}^{SPA}$. Moreover, this cutoff is increasing in c.

Proof. In the appendix.

Proposition 3 For every c, there exists a cut-off $0 < \varepsilon^{**}(c) < c$ such that for all $\varepsilon < \varepsilon^{**}(c), R_{SPA}^{SPA} > R_{seq}^{SPA}$ and for all $\varepsilon > \varepsilon^{**}(c), R_{SPA}^{SPA} < R_{seq}^{SPA}$. The cutoff $\varepsilon^{**}(c)$ is increasing in c and $\varepsilon^{**}(c) < \varepsilon^*(c)$.

Proof. In the appendix.
For example, for \(c = 1 \) we plot the expected revenue in all three auctions as a function of \(\epsilon \) in the following figure

![Graph showing expected revenue as a function of epsilon for different auctions.](image)

Figure 1: \(R^{SPA} \) in green, \(R^{FPA}_{sim} \) in black, \(R^{FPA}_{seq} \) in red, \(R^{OPT} \) in yellow

In this case \(\epsilon^* (c) \) is defined by the equation

\[
(\epsilon + 1)^2 \left(\ln \left(\frac{\epsilon + 2 - \sqrt{\epsilon (\epsilon + 2)}}{\epsilon + 2 + \sqrt{\epsilon (\epsilon + 2)}} \right) + 2 \arctan \left(\frac{\sqrt{\epsilon}}{\epsilon + 2} \right) \right) + \frac{(\epsilon + 1)}{(\epsilon + 2)} = \frac{1}{4} (1 + \epsilon) \Rightarrow \epsilon^* (1) \approx 0.721.
\]

Note that we then have that whenever the ratio between the supports is lower than \(\frac{\epsilon}{\epsilon + 1} \approx 0.58 \) the sequential auction will yield higher expected revenue than the simultaneous one. Moreover, \(\epsilon^{**} (c) \) is defined by the equation

\[
\frac{1}{6} \frac{3\epsilon + 2}{\epsilon + 1} = \frac{1}{4} (1 + \epsilon) \Rightarrow \epsilon^{**} (1) = \frac{1}{3} \sqrt{3} \approx 0.577.
\]

Therefore, whenever the ratio between the supports is lower than \(\frac{1}{\epsilon + 1} \approx 0.634 \) the sequential auction will yield higher expected revenue than the second price auction.

We therefore conclude that when the asymmetry is high enough, \(\epsilon > \epsilon^* (c) \) where \(\epsilon^* (c) < c \), then the sequential bidding auction yields higher expected revenue than both simultaneous auctions.

In terms of efficiency, however, the sequential bidding auction always yields lower efficiency than the simultaneous auction if the stronger bidder bids first. We define efficiency as the probability that the winner is the bidder with the higher valuation. Recall that the simultaneous first price auction does not guarantee efficiency when bidders are asymmetric since the weaker bidder bids more aggressively than the stronger one (less shading down bids) and then the weaker bidder may win although her valuation is lower than the stronger bidder’s valuation. This phenomenon is also present in the sequential first price auction. When the weaker bidder bids second she has an advantage over the stronger one since she gets to observe his bid and
can win by placing the same bid. This leads to cases where the weaker bidder wins although her valuation is lower than the stronger bidder’s valuation. In the following we compare the efficiency of the mechanisms.

For the second price auction we have

\[Eff^{SPA} = 1 \]

For the simultaneous first price auction

\[Eff^{FPA}_{sim} = 1 - \Pr (b_2 (v_2) > b_1 (v_1) \text{ and } v_1 > v_2) = \frac{1}{2} \left(\frac{1}{2} v_2^2 + 4 c^2 + 5 \epsilon c \right) \left(\epsilon + c \right) \]

For the sequential FPA, when the strong bidder (S) bids first and the weak bidder (W) bids second, we have, for \(\epsilon \leq c \)

\[Eff^{FPA}_{seq} (S, W) = 1 - \Pr (b_1 (v_1) < v_2 \text{ and } v_2 < v_1) = \frac{1}{4} \frac{\epsilon^2 + 3 c^2 + 2 \epsilon c}{c (\epsilon + c)} \]

while for \(\epsilon \geq c \)

\[Eff^{FPA}_{seq} (S, W) = \frac{\epsilon + c}{2} \frac{1}{\epsilon + c} \]

Finally for the optimal auction

\[Eff^{OPT} = \frac{3 c + 2 \epsilon}{4} \]

Therefore we have for every \(c \) and every \(\epsilon \)

\[Eff^{OPT} < Eff^{FPA}_{seq} (S, W) < Eff^{FPA}_{sim} < Eff^{SPA} = 1 \]

However, if we order the bidders such that the weak bidder bids first than we can increase efficiency. In this case we have

\[b_2 (v_2; b_1) = \begin{cases} 0 & \text{if } 0 \leq v_2 < b_1 \\ b_1 & \text{if } b_1 \leq v_2 < c + \epsilon \end{cases} \]

and

\[b_1 (v_1) = \frac{1}{2} v_1 \text{ for all } 0 \leq v_1 \leq c \]

and

\[Eff^{FPA}_{seq} (W, S) = \frac{3 c + 4 \epsilon}{4} \frac{1}{c + \epsilon} \]

Then

\[Eff^{FPA}_{seq} (S, W) < Eff^{FPA}_{seq} (W, S) \]

and for \(\epsilon < 2c \) we have

\[Eff^{FPA} (W, S) < Eff^{FPA}_{sim} \]

while for \(\epsilon > 2c \) we have

\[Eff^{FPA}_{seq} (W, S) > Eff^{FPA}_{sim} \]

For example, for \(c = 1 \) the following figure describes the efficiency as a function of \(\epsilon \). In the figure \(Eff^{OPT} \) appears in yellow, \(Eff^{FPA} \) in black, \(Eff^{FPA}_{sim} (S, W) \) in red and \(Eff^{FPA}_{seq} (W, S) \) in light green (recall that the efficiency of the second price auction is 1 for all \(\epsilon \)).
When the asymmetry is very large the efficiency in all auctions except for the optimal auction approaches 1.

Finally we discuss the differences between the auctions in the eyes of the bidders. For each of the auctions we calculate the expected revenue of the strong bidder and the weak bidder. For the simultaneous SPA we have

\[
u_1^{SPA}(v) = \begin{cases}
\int_0^v (v - v_2) \frac{1}{c} dv_2 = \frac{1}{2} \frac{v^2}{\epsilon} & \text{if } 0 \leq v \leq c \\
\int_0^c (v - v_2) \frac{1}{c} dv_2 = v - \frac{1}{2} c & \text{if } c \leq v \leq c + \epsilon
\end{cases}
\]

\[
u_2^{SPA}(v) = \int_0^v (v - v_1) \frac{1}{c + \epsilon} dv_1 = \frac{1}{2} \frac{v^2}{c + \epsilon}
\]

and ex ante we have

\[
U_1^{SPA} = \int_0^c \left(\frac{1}{2} \frac{v^2}{c} \right) \frac{1}{c + \epsilon} dv + \int_{\epsilon}^{c+\epsilon} \left(v - \frac{1}{2} c \right) \frac{1}{c + \epsilon} dv = \frac{1}{6} \frac{3 \epsilon + 3 \epsilon^2 + c^2}{c + \epsilon}
\]

\[
U_2^{SPA} = \int_0^c \left(\frac{1}{2} \frac{v^2}{c + \epsilon} \right) \frac{1}{c} dv = \frac{1}{6} \frac{c^2}{c + \epsilon}
\]

For the simultaneous FPA we have

\[
u_1^{simFPA}(v) = \frac{(c + \epsilon) \left(\epsilon (\epsilon + 2c) v^2 + c^2 (\epsilon + c)^2 - c (\epsilon + c) \sqrt{c^2 (\epsilon + c)^2 + \epsilon (\epsilon + 2c) v^2} \right)}{\epsilon (\epsilon + 2c) \sqrt{c^2 (\epsilon + c)^2 + v^2 \epsilon (2c + \epsilon)}}
\]

\[
u_2^{simFPA}(v) = \frac{c \left(\epsilon v^2 (\epsilon + 2c) - c^2 (\epsilon + c)^2 + c (\epsilon + c) \sqrt{c^2 (\epsilon + c)^2 - \epsilon v^2 (\epsilon + 2c)} \right)}{\epsilon (\epsilon + 2c) \sqrt{c^2 (\epsilon + c)^2 - v^2 \epsilon (2c + \epsilon)}}
\]
and ex ante we have

\[U_{1}^{simFPA} = \frac{(c + \varepsilon)^2}{2\varepsilon (2c + \varepsilon)} \left(\frac{c^2}{\sqrt{\varepsilon} (2c + \varepsilon)} \right) \left(3 \ln \left(\frac{c + \varepsilon + \sqrt{\varepsilon (2c + \varepsilon)}}{c} \right) - 2 \arccosh \left(\frac{c + \varepsilon}{c} \right) \right) - (c - \varepsilon) \]

\[U_{2}^{simFPA} = \frac{c^2 (c + \varepsilon)^2}{2\varepsilon (2c + \varepsilon) \sqrt{\varepsilon} (2c + \varepsilon)} \left(\frac{1}{2\pi} - \arcsin \left(\frac{c}{c + \varepsilon} \right) - 2 \left(\arcsin \frac{\sqrt{\varepsilon (2c + \varepsilon)}}{c + \varepsilon} \right) \right) + \frac{1}{2} \frac{c^2 (c + 2\varepsilon)}{\varepsilon (2c + \varepsilon)} \]

For the sequential FPA we have, when \(0 \leq \varepsilon \leq c\)

\[u_{1}^{seqFPA} (v) = \frac{v^2}{4c} \]
\[u_{2}^{seqFPA} (v) = \begin{cases} \frac{v^2}{4c} & \text{if } 0 \leq v \leq \frac{1}{2} (c + \varepsilon) \\ f_{v}^{c+\varepsilon} f_{0}^{2v} (v - \frac{1}{2} v_1) \frac{1}{c + \varepsilon} dv_1 = v - \frac{1}{4} (c + \varepsilon) & \text{if } \frac{1}{2} (c + \varepsilon) \leq v \leq c \end{cases} \]

and when \(c \leq \varepsilon\) then

\[u_{1}^{seqFPA} (v) = \begin{cases} \frac{v^2}{4c} & \text{if } 0 \leq v \leq 2c \\ v - c & \text{if } 2c \leq v \leq c + \varepsilon \end{cases} \]
\[u_{2}^{seqFPA} (v) = \frac{v^2}{c + \varepsilon} \]

Note that although the second bidder is the weaker one she enjoys a higher expected revenue for every type since she has the benefit of bidding second. The ex ante expected payoff is given by

\[U_{1}^{seqFPA} = \begin{cases} \frac{1}{12} \frac{(c + \varepsilon)^2}{\varepsilon} & \text{if } 0 \leq \varepsilon \leq c \\ \frac{1}{6} \frac{3c^2 + \varepsilon^2}{c + \varepsilon} & \text{if } c \leq \varepsilon \end{cases} \]
\[U_{2}^{seqFPA} = \begin{cases} \frac{1}{24} \frac{7c^2 - 4c^2 + \varepsilon^2}{\varepsilon} & \text{if } 0 \leq \varepsilon \leq c \\ \frac{1}{3} \frac{c^2}{c + \varepsilon} & \text{if } c \leq \varepsilon \end{cases} \]

Finally, for the optimal auction

\[u_{1}^{OPT} (v) = \begin{cases} 0 & \text{if } 0 \leq v \leq \frac{1}{2} (c + \varepsilon) \\ \frac{1}{8} (2v - c - \varepsilon)(2c + v - \varepsilon) & \text{if } \frac{1}{2} (c + \varepsilon) \leq v \leq c + \varepsilon \\ \frac{1}{8} (8v - 5c - 4\varepsilon) & \text{if } c + \varepsilon \leq v \leq c + \varepsilon \end{cases} \]

and

\[u_{2}^{OPT} (v) = \begin{cases} 0 & \text{if } 0 \leq v \leq \frac{1}{2} c \\ \frac{1}{8} (2v - c)(c + 2v - 2\varepsilon) & \text{if } \frac{1}{2} c \leq v \leq c \end{cases} \]

The ex ante expected payoff is given by

\[U_{1}^{OPT} = \frac{1}{48} \frac{9c\varepsilon + 6c^2 + 4c\varepsilon^2}{c + \varepsilon} \]
\[U_{2}^{OPT} = \frac{1}{48} \frac{4c + 3\varepsilon}{c + \varepsilon} \]

We prove the following proposition
Proposition 4 For every c and ε we have

$$U_1^{seq FPA} < U_1^{sim FPA} < U_1^{SPA}$$

and

$$U_2^{SPA} < U_2^{sim FPA} < U_2^{seq FPA}$$

Proof. In the appendix ■

The above proposition establishes the fact that the weaker bidder prefers the sequential bidding auction over the two simultaneous bidding auctions while the stronger one does not. Therefore letting the weaker bidder bid after the stronger bidder bids, both increases her ex-ante expected payoff and the expected revenue of the seller (when the asymmetry is large enough).

For example, when $c = 1$ the next two figures present the ex ante expected payoffs of the strong bidder, bidder 1 (figure 3) and the weak bidder, bidder 2 (figure 4) in all four auction formats.

![Figure 3](image-url)

Figure 3: U_1^{SPA} in green, $U_1^{sim FPA}$ in black, $U_1^{seq FPA}$ in red, U_1^{OPT} in yellow
3.2 Shift of probabilities

Assume that F_1 is a uniform distribution on $[\varepsilon, c + \varepsilon]$ while F_2 is uniform on $[0, c]$. Bidder 1 is therefore the strong bidder. If bidder 1 bids first then we have

$$R_{\text{seq}}^{FPA} (S, W) = \begin{cases} \int_{\varepsilon}^{c+\varepsilon} \left(\frac{1}{2} v \right) \frac{1}{c} dv = \frac{1}{4} (c + 2 \varepsilon) & \text{if } 0 \leq \varepsilon \leq c \\ \int_{\varepsilon}^{2c} \left(\frac{1}{2} v \right) \frac{1}{c} dv + \int_{2c}^{c+\varepsilon} \frac{1}{c} \frac{1}{\varepsilon} dv = \frac{1}{4} \varepsilon \frac{4c-\varepsilon}{c} & \text{if } c \leq \varepsilon \leq 2c \\ \frac{1}{c} & \text{if } 2c \leq \varepsilon \end{cases}$$

while if bidder 1 bids second then

$$R_{\text{seq}}^{FPA} (W, S) = \begin{cases} \int_{\varepsilon}^{c+\varepsilon} \left(\frac{1}{2} v + \varepsilon \right) \frac{1}{c} dv = \frac{1}{4c} (c - \varepsilon) (c + 3 \varepsilon) & \text{if } 0 \leq \varepsilon \leq c \\ 0 & \text{if } c \leq \varepsilon \end{cases}$$

Therefore the optimal order is again for the stronger bidder to bid first. We thus assume in the following that we are able to determine the order of the bidders and we let the weaker bidder bid second. Then we have

$$R_{\text{seq}}^{FPA} = \begin{cases} \frac{1}{4} (c + 2 \varepsilon) & \text{if } 0 \leq \varepsilon \leq c \\ \frac{1}{4} \varepsilon \frac{4c-\varepsilon}{c} & \text{if } c \leq \varepsilon \leq 2c \\ \frac{1}{c} & \text{if } 2c \leq \varepsilon \end{cases}$$

We again use Kaplan and Zamir (2012) to derive the equilibrium bid function of the simultaneous bid FPA. We first note that if $\varepsilon \geq 2c$ the stronger bidder will ensure winning by bidding c therefore the following is an equilibrium of the simultaneous FPA:

$$b_1(v_1) = c$$

$$b_2(v_2) = v_2$$
and then
\[R^{FPA}_{\text{sim}} = \int_{\varepsilon}^{c+\varepsilon} \frac{1}{c} dv_1 = c \]

When \(0 \leq \varepsilon \leq 2c \) the inverse bid functions, \(v_1 (b) \) and \(v_2 (b) \) solve the same set of differential equations (4) as before, with the following boundary conditions:
\[v_1 \left(\frac{1}{8} \frac{4c\varepsilon - c^2 + 4c^2}{c} \right) = c + \varepsilon \] and
\[v_2 \left(\frac{1}{8} \frac{4c\varepsilon - c^2 + 4c^2}{c} \right) = c \] and
\[v_1 \left(\frac{c}{2} \right) = \varepsilon \] and \(v_2 \left(\frac{c}{2} \right) = \frac{c}{2} \).\footnote{The equilibrium is such that the weaker bidder bids her true valuation up to \(\frac{c}{2} \) and from there bids according to \(b_2 (v) = v_2^{-1} (b) \).} Again, for every \(b \in \left[\frac{c}{2}, \frac{1}{8} \frac{4c\varepsilon - c^2 + 4c^2}{c} \right] \) we have \(v_2 (b) < v_1 (b) \). The weaker bidder bids more aggressively in the equilibrium of the simultaneous FPA. We again define the random variable the winning bid, \(P \). This random variable is distributed on \(\left[\frac{c}{2}, 1 \right] \) with the following distribution function
\[G (p) = \Pr (\max \{ v_1 (v), v_2 (v) \} \leq p) = F_1 (v_1 (p)) F_2 (v_2 (p)) \]
with a density function \(g (p) \).

Therefore we have
\[R^{FPA}_{\text{sim}} = \int_{\frac{c}{2}}^{1} \frac{1}{8} \frac{4c\varepsilon - c^2 + 4c^2}{c} pg (p) dp \]

Unfortunately we could not derive here the analytic expression of the revenue. However, we could numerically evaluate the integral for any set of parameters (\(c \) and \(\varepsilon \)).

Finally, in the SPA the bidders bid their valuation and then the random variable \(P \) is distributed on \([0, c]\) with the following distribution function for \(0 \leq \varepsilon \leq c \)
\[K (p) = \Pr (\min \{ v_1, v_2 \} \leq p) = \begin{cases} \frac{p}{c} & \text{if } 0 \leq p \leq \varepsilon \\ \frac{2p - \varepsilon + \varepsilon - p^2}{c^2} & \text{if } \varepsilon \leq p \leq c \end{cases} \]

Then
\[R^{SPA} = E [K (p)] = \frac{1}{6} \frac{c^3 - 3c\varepsilon^2 + 3c^2 \varepsilon + 2c^3}{c^2} \]

For \(c \leq \varepsilon \), we have for \(0 \leq p \leq c \)
\[K (p) = \Pr (\min \{ v_1, v_2 \} \leq p) = \frac{p}{c} \]

Then
\[R^{SPA} = E [K (p)] = \frac{1}{2} c \]

We are now able to compare analytically the sequential auction only with the second price auction. We have the following proposition.

Proposition 5 For every \(c \), there exists a cut-off \(0 < \varepsilon^{**} (c) < c \) such that for all \(\varepsilon < \varepsilon^{**} (c) \), \(R^{SPA} > R^{FPA}_{\text{seq}} \) and for all \(\varepsilon > \varepsilon^{**} (c) \), \(R^{SPA} < R^{FPA}_{\text{seq}} \). The cutoff \(\varepsilon^{**} (c) \) is increasing in \(c \).

Proof. In the appendix
Since we do not have the explicit expression for the revenue in the simultaneous FPA we can not prove a similar proposition to Proposition 2. However, for \(c = 1 \) we are able to plot the revenue as a function of \(\varepsilon \). Figure 6 demonstrates that indeed for some \(1 \leq \varepsilon \leq 2 \) we have \(R^{FPA} < R^{FPA}_{seq} \)

Note that for \(\varepsilon \geq 2c \) we have

\[
R^{FPA}_{seq} = R^{FPA}_{sim} = c
\]
4 Other Results

In this section we prove some negative general results for the sequential bidding model. Recall that bidder j’s valuation of the object is denoted by v_j and is private information to bidder j. It is common knowledge among the bidders that bidder j’s valuation v_j is drawn from a continuous and twice differentiable distribution F_j with a positive density function f_j on the interval $[a_j, c_j]$, $0 \leq a_j < c_j$. Since bidder i bids zero whenever her valuation is already below the maximum bid of bidders 1 up to $i - 1$ and bids this maximum bid or above it whenever her valuation is higher than this maximum we get that in the PBE of the game, bidder j’s maximization problem becomes

$$\max_b \left\{ \prod_{i=j+1}^n F_i (b) (v_j - b) \right\}$$

$$\text{s.t. } b \geq \max_{1 \leq i \leq j-1} \{ b_i (v_i) \}$$

where F_j are all defined on $[\min_{1 \leq j \leq n} a_j, \max_{1 \leq j \leq n} c_j]$ such that $F_i \equiv 0$ on $[\min_{1 \leq j \leq n} a_j, a_i]$ and $F_i \equiv 1$ on $[c_i, \max_{1 \leq j \leq n} c_j]$. We can therefore easily construct a PBE for any number of bidders and any distributions.

4.1 Monotonicity in the number of bidders

As in the sequential all-pay auction in Segev and Sela (2014a) there exists no monotonicity of the revenue in the number of bidders. We prove the following result.

Proposition 6 In the sequential FPA there exist no monotonicity of the expected revenue in the number of bidders. In other words adding a bidder may decrease the expected revenue.

Proof. We have the following counter example. Assume two symmetric bidders such that F_1 and F_2 are uniform on $[0, 1]$ we have

$$R_{w_{eq}}^{FPA} ([0, 1], [0, 1]) = \int_0^1 \left(\frac{1}{2} v_1 \right) dv_1 = \frac{1}{4}$$

If we now add a strong bidder with F_3 uniform on $[\varepsilon, 1 + \varepsilon]$ such that $0 \leq \varepsilon \leq 1$ and place her last then we have the following PBE:

$$b_3 (v_3) = \begin{cases} 0 & \text{if } 0 \leq v_3 < \max \{ b_1 (v_1), b_2 (v_2) \} \\ \max \{ b_1 (v_1), b_2 (v_2) \} & \text{if } \max \{ b_1 (v_1), b_2 (v_2) \} \leq v_2 \leq c \end{cases}$$

Bidder 2’s maximization problem is then

$$\max_b \left\{ (b - \varepsilon) (v_2 - b) \right\}$$

$$\text{s.t. } b \geq \max \{ b_1 (v_1), \varepsilon \}$$

If v_1 is such that $b_1 (v_1) = 0$ then

$$b_2 (v_2) = \begin{cases} 0 & \text{if } 0 \leq v_2 < \varepsilon \\ \frac{1}{2} (v_2 + \varepsilon) & \text{if } \varepsilon \leq v_2 \leq 1 \end{cases}$$
Otherwise, note that if \(b_1(v_1) \) is positive then it is necessarily larger or equal to \(\varepsilon \) and smaller or equal to 1 and therefore

\[
b_2(v_2) = \begin{cases}
0 & \text{if } 0 \leq v_2 < b_1(v_1) \\
b_1(v_1) & \text{if } b_1(v_1) \leq v_2 < \min\{2b_1(v_1) - \varepsilon, 1\} \\
\frac{1}{2}(v_2 + \varepsilon) & \text{if } \min\{2b_1(v_1) - \varepsilon, 1\} \leq v_2 \leq 1
\end{cases}
\]

Finally, when \(v_1 \geq \varepsilon \) bidder 1’s maximization problem is

\[
\max_b \{b(b - \varepsilon)(v_1 - b)\} \\
\text{s.t. } b \geq \varepsilon
\]

and when \(v_1 < \varepsilon \) she bids zero. Therefore we have

\[
b_1(v_1) = \begin{cases}
0 & \text{if } 0 \leq v_1 < \varepsilon \\
\frac{1}{8}\left(v_1 + \varepsilon + \sqrt{(v_1 - \varepsilon)^2 + v_1 \varepsilon}\right) & \text{if } \varepsilon \leq v_1 \leq 1
\end{cases}
\]

We can now compute

\[
R_{\text{seq}}^{FP,A}([0, 1], [0, 1], [\varepsilon, 1 + \varepsilon]) = \frac{1}{48} (-42\varepsilon^3 + 5\varepsilon^2 + 22\varepsilon + 11) + \frac{(2 - \varepsilon)}{12} \sqrt{(1 - \varepsilon)^2 + \varepsilon + \frac{\varepsilon^2}{8} \ln \left(1 - \frac{1}{2}\varepsilon + \sqrt{\frac{(1 - \varepsilon)^2 + \varepsilon}{\varepsilon}}\right)}
\]

In figure 6 we plot both \(R_{\text{seq}}^{FP,A}([0, 1], [0, 1]) \) in red and \(R_{\text{seq}}^{FP,A}([0, 1], [0, 1], [\varepsilon, 1 + \varepsilon]) \) in black as a function of \(\varepsilon \) and when \(\varepsilon \) is large enough \((\varepsilon > 0.847) \) then we have \(R_{\text{seq}}^{FP,A}([0, 1], [0, 1], [\varepsilon, 1 + \varepsilon]) < R_{\text{seq}}^{FP,A}([0, 1], [0, 1]) \) i.e., adding a third bidder decreased the expected revenue.
However, if we place the stronger bidder first instead of last then we have

\[
R^{FPA}_{\text{seq}} ([\varepsilon, 1 + \varepsilon], [0, 1], [0, 1]) = \begin{cases}
\frac{1}{32} (-64\varepsilon^3 + 144\varepsilon^2 + 180\varepsilon + 171) & \text{if } 0 \leq \varepsilon \leq \frac{1}{2} \\
\frac{1}{32} (-64\varepsilon^3 + 324\varepsilon + 135) & \text{if } \frac{1}{2} \leq \varepsilon \leq \frac{3}{4} \\
\frac{1}{12} (12\varepsilon - 4\varepsilon^2 + 3) & \text{if } \frac{3}{4} \leq \varepsilon \leq 1
\end{cases}
\]

which is indeed always higher than \(R^{FPA}_{\text{seq}} ([0, 1], [0, 1]) \).

4.2 Optimal order of the bidders

We emphasize that determining the optimal order is crucial in the sequential model. We prove next that it is not always optimal to place the strong bidder first.

Proposition 7 If the distribution of bidder 1’s valuation (the strong bidder) first order stochastically dominates that of bidder 2’s valuation (the weak bidder) than it is not necessarily optimal in terms of expected revenue to place the strong bidder first.

Proof. We have the following counter example. If \(F_1 \) is uniform on \([\varepsilon, 1] \) while \(F_2 \) is uniform over \([0, 1] \) then \(F_1 \) first order stochastically dominates \(F_2 \). However we have

\[
R(1, 2) = \int_{\varepsilon}^{1} \frac{1}{2} \frac{1}{1 - \varepsilon} dv = \frac{1}{4} (\varepsilon + 1)
\]

where \(R(1, 2) \) is the expected revenue if we place bidder 1 first and then bidder 2. However, if we place bidder 2 first then bidder 2’s maximization problem is given by

\[
\max \left\{ \frac{b - c}{1 - \varepsilon} (v - b) \right\} \\
\text{s.t } b \geq \varepsilon
\]

and then

\[
b_1 (v) = \begin{cases}
0 & \text{if } 0 \leq v < \varepsilon \\
\frac{1}{2} (v + \varepsilon) & \text{if } \varepsilon \leq v \leq 1
\end{cases}
\]

and

\[
R(2, 1) = \int_{\varepsilon}^{1} \left(\frac{v + \varepsilon}{2} \right) dv = \frac{1}{4} (3\varepsilon + 1) (1 - \varepsilon)
\]

Therefore \(R(1, 2) \geq R(2, 1) \) whenever \(\frac{1}{3} \leq \varepsilon \leq 1 \) while \(R(1, 2) < R(2, 1) \) whenever \(0 \leq \varepsilon < \frac{1}{3} \).

5 Concluding remarks

We analyze a sequential bidding first price auction and demonstrate that it may yield a higher expected revenue than both the simultaneous bidding first price auction and the second price auction when the stronger bidder bids first. We therefore argue that when there is reason to believe that bidders are asymmetric the seller may want to consider ordering them and let them bid one by one. By doing that she may not only
increase the expected payoff of the weak bidder but also her expected revenue. If bidders are asymmetric enough we show that the sequential FPA may also increase efficiency compared to the simultaneous FPA. This happens however when the stronger bidder bids second.

The lower efficiency achieved in the sequential bidding auction when the stronger bidder bids first is mainly due to the preferred position of the second bidder (when she is the weaker bidder) which allows her to win the auction easily by bidding the same bid as the first bidder. We leave for future research examining mechanisms that could potentially increase the efficiency (when the revenue is already higher than in the simultaneous FPA) by reducing the second bidder’s advantage. One such mechanism may be giving a head start to the first bidder. In Segev and Sela (2014b) we discuss head starts in the sequential all-pay auction in which the second bidder can win either by bidding strictly more than the first bidder by some constant (an additive head start) or by bidding the first bidder’s bid multiplied by some constant larger than one (multiplicative head start) and show that head starts can increase both efficiency and expected revenue. Other such mechanisms may be a reserve price, a minimal bid or a winning bid mechanisms.

Other important questions such as determining the optimal order of bidders for a general number of bidders and general distributions are also still open and will have to be addressed in continuation research.

References

6 Appendix

Proof of Proposition 2

For $\varepsilon = 0$, $R_{sim} = \frac{1}{3} c > R_{seq} = \frac{1}{4} c$. Define the difference between the expected revenue in both auctions as

$$g(\varepsilon) = R_{sim}^{\text{EPA}} - R_{seq}^{\text{EPA}}$$

$$= \begin{cases} \frac{c^2 (\varepsilon + c)^2}{\varepsilon (\varepsilon + 2c) \sqrt{\varepsilon (\varepsilon + 2c)}} \left(\ln \left(\frac{\varepsilon + 2c - \sqrt{\varepsilon (\varepsilon + 2c)}}{\varepsilon + 2c + \sqrt{\varepsilon (\varepsilon + 2c)}} \right) + 2 \arctan \left(\sqrt{\frac{\varepsilon}{\varepsilon + 2c}} \right) + \frac{1}{2} \frac{(2c - \varepsilon) \sqrt{\varepsilon (\varepsilon + 2c)}}{c^2 (\varepsilon + c)} \right) & \text{if } 0 \leq \varepsilon \leq c \\ \frac{c^2 (\varepsilon + c)^2}{(\varepsilon + 2c) \varepsilon \sqrt{\varepsilon (\varepsilon + 2c)}} \left(\ln \left(\frac{\varepsilon + 2c - \sqrt{\varepsilon (\varepsilon + 2c)}}{\varepsilon + 2c + \sqrt{\varepsilon (\varepsilon + 2c)}} \right) + 2 \arctan \left(\sqrt{\frac{\varepsilon}{\varepsilon + 2c}} \right) + \frac{c^2 \sqrt{\varepsilon (\varepsilon + 2c)}}{(\varepsilon + c)^3} \right) & \text{if } c \leq \varepsilon \end{cases}$$

We first show that $g(\varepsilon) < 0$ for every $\varepsilon \geq c$. Note that when $\varepsilon \geq c$, $g(\varepsilon) = \frac{c^2 (\varepsilon + c)^2}{(\varepsilon + 2c) \varepsilon \sqrt{\varepsilon (\varepsilon + 2c)}} f(\varepsilon)$ for

$$f(\varepsilon) = \ln \left(\frac{\varepsilon + 2c - \sqrt{\varepsilon (\varepsilon + 2c)}}{\varepsilon + 2c + \sqrt{\varepsilon (\varepsilon + 2c)}} \right) + 2 \arctan \left(\sqrt{\frac{\varepsilon}{\varepsilon + 2c}} \right) + \frac{c^2 \sqrt{\varepsilon (\varepsilon + 2c)}}{(\varepsilon + c)^3}$$

therefore we show that $f(\varepsilon) < 0$ for every $\varepsilon \geq c$. Now

$$f(\varepsilon) < 0 \iff \frac{c^2 \sqrt{\varepsilon (\varepsilon + 2c)}}{(\varepsilon + c)^3} < \ln \left(\frac{\varepsilon + 2c - \sqrt{\varepsilon (\varepsilon + 2c)}}{\varepsilon + 2c - \sqrt{\varepsilon (\varepsilon + 2c)}} \right) - 2 \arctan \left(\sqrt{\frac{\varepsilon}{\varepsilon + 2c}} \right)$$

The r.h.s is an increasing function of ε since $\frac{d}{d\varepsilon} \left(\ln \left(\frac{\varepsilon + 2c - \sqrt{\varepsilon (\varepsilon + 2c)}}{\varepsilon + 2c - \sqrt{\varepsilon (\varepsilon + 2c)}} \right) - 2 \arctan \left(\sqrt{\frac{\varepsilon}{\varepsilon + 2c}} \right) \right) = \frac{2 \varepsilon^2 + 2c^2 c - c (\varepsilon + 2c) \sqrt{\varepsilon (\varepsilon + 2c)}}{\varepsilon^3 (\varepsilon + 2c)} > 0$ and $(\varepsilon + c) \sqrt{\varepsilon^2 + 2c \varepsilon c - c (\varepsilon + 2c) \sqrt{\varepsilon (\varepsilon + 2c)}} > c (\varepsilon + 2c) \sqrt{\varepsilon (\varepsilon + 2c)}$. Moreover

$$\left(\ln \left(\frac{\varepsilon + 2c - \sqrt{\varepsilon (\varepsilon + 2c)}}{\varepsilon + 2c - \sqrt{\varepsilon (\varepsilon + 2c)}} \right) - 2 \arctan \left(\sqrt{\frac{\varepsilon}{\varepsilon + 2c}} \right) \right) \bigg|_{\varepsilon = c} = \ln \left(\frac{3(\sqrt{3} - 1)}{3 - \sqrt{3}} \right) - 2 \arctan \left(\sqrt{\frac{1}{3}} \right) = 0.26976.$$ Therefore

$$\ln \left(\frac{\varepsilon + 2c - \sqrt{\varepsilon (\varepsilon + 2c)}}{\varepsilon + 2c - \sqrt{\varepsilon (\varepsilon + 2c)}} \right) - 2 \arctan \left(\sqrt{\frac{\varepsilon}{\varepsilon + 2c}} \right) \geq 0.26976$$

for every $\varepsilon \geq c$. The l.h.s is first increasing in ε and then decreasing, since

$$\frac{d}{d\varepsilon} \left(\frac{c^2 \sqrt{\varepsilon (\varepsilon + 2c)}}{(\varepsilon + c)^3} \right) = \frac{\varepsilon^2 (c^4 + c^2) \left(\varepsilon^2 + 2c \varepsilon c \right) \sqrt{\varepsilon^2 + 2c \varepsilon c}}{4c^3 (\varepsilon + c)^3} \left(\ln \left(\frac{\varepsilon + 2c - \sqrt{\varepsilon (\varepsilon + 2c)}}{\varepsilon + 2c - \sqrt{\varepsilon (\varepsilon + 2c)}} \right) + 2 \arctan \left(\sqrt{\frac{\varepsilon}{\varepsilon + 2c}} \right) \right) < 0 \iff$$

$$\frac{\varepsilon^2 (c^2 + 2c) \left(\varepsilon^3 + 3c^2 + 4c^3 + 4c^2 c + 4c^3 c \right)}{4c^3 (\varepsilon + c)^3} \left(\varepsilon^2 + 2c \varepsilon c \right) \sqrt{\varepsilon^2 + 2c \varepsilon c} \left(\ln \left(\frac{\varepsilon + 2c - \sqrt{\varepsilon (\varepsilon + 2c)}}{\varepsilon + 2c - \sqrt{\varepsilon (\varepsilon + 2c)}} \right) + 2 \arctan \left(\sqrt{\frac{\varepsilon}{\varepsilon + 2c}} \right) \right) - 2 \arctan \left(\sqrt{\frac{\varepsilon}{\varepsilon + 2c}} \right) > 0$$

Both the r.h.s and the l.h.s of this inequality are increasing functions of ε on $[0, c]$ since

$$\frac{\varepsilon^2 (c^2 + 2c) \left(\varepsilon^3 + 3c^2 + 4c^3 + 4c^2 c + 4c^3 c \right)}{4c^3 (\varepsilon + c)^3} (\varepsilon + c)^3 (\varepsilon^2 + 2c \varepsilon c) \sqrt{\varepsilon^2 + 2c \varepsilon c} > 0$$

and

$$\frac{d}{d\varepsilon} \left(\ln \left(\frac{\varepsilon + 2c - \sqrt{\varepsilon (\varepsilon + 2c)}}{\varepsilon + 2c - \sqrt{\varepsilon (\varepsilon + 2c)}} \right) - 2 \arctan \left(\sqrt{\frac{\varepsilon}{\varepsilon + 2c}} \right) \right) = \frac{1}{\varepsilon ^2 (c^2 + 2c) \left(\varepsilon^3 + 3c^2 + 4c^3 + 4c^2 c + 4c^3 c \right)} \left(2c^2 (\varepsilon^2 + 3c^2 + 188c^3 + 215c^3 + 150c^3 e^3 + 63c^3 e^2 + 104c^3 e^2 + 16c^3 e^4) \right) > 0$$

and
\[\frac{\varepsilon}{(c+\varepsilon)\sqrt{\varepsilon^2+2\varepsilon c}} > 0. \] Moreover, \(\lim_{\varepsilon \to 0} \left(\frac{\varepsilon^2 + 2c(c^2 + 4\varepsilon^2 + 4c^2 + 4\varepsilon^2 c)}{4c^2 (c+\varepsilon)(c^2 + 3c^2 + 2c\varepsilon) \sqrt{\varepsilon^2+2\varepsilon c}} \right) = 0 \) and \(\lim_{\varepsilon \to 0} \left(\frac{\varepsilon + 2c + \sqrt{\varepsilon^2 + 2\varepsilon c}}{\varepsilon + 2c - \sqrt{\varepsilon^2 + 2\varepsilon c}} - 2 \arctan \sqrt{\frac{\varepsilon}{\varepsilon + 2c}} \right) = 0. \)

Finally, the difference between the l.h.s and the r.h.s is increasing in \(\varepsilon \) on \([0, c] \) since

\[
\frac{d}{d\varepsilon} \left(\frac{\varepsilon^2 (\varepsilon + 2c)(\varepsilon^3 + 4c^2 + 4\varepsilon^2 + 4c^2 + 4\varepsilon^2 c)}{4c^2 (c+\varepsilon)(\varepsilon^2 + 3c^2 + 2c\varepsilon) \sqrt{\varepsilon^2+2\varepsilon c}} \right) - \left(\frac{\varepsilon + 2c + \sqrt{\varepsilon^2 + 2\varepsilon c}}{\varepsilon + 2c - \sqrt{\varepsilon^2 + 2\varepsilon c}} - 2 \arctan \sqrt{\frac{\varepsilon}{\varepsilon + 2c}} \right) = \varepsilon^2 (\varepsilon + 2c) \left(2\varepsilon^6 + 20c\varepsilon^5 + 159c\varepsilon^4 + 130\varepsilon^3 c^3 + 59c^4 c^2 + 100\varepsilon^5 c + 16\varepsilon^5 c \right) > 0.
\]

Moreover, since

\[
g(0) = \lim_{\varepsilon \to 0} \left(\frac{\varepsilon^2 (\varepsilon + 2c)(\varepsilon^3 + 4c^2 + 4\varepsilon^2 + 4c^2 + 4\varepsilon^2 c)}{4c^2 (c+\varepsilon)(\varepsilon^2 + 3c^2 + 2c\varepsilon) \sqrt{\varepsilon^2 + 2\varepsilon c}} \left(\frac{\varepsilon + 2c - \sqrt{\varepsilon^2 + 2\varepsilon c}}{\varepsilon + 2c + \sqrt{\varepsilon^2 + 2\varepsilon c}} + 2 \arctan \left(\frac{\varepsilon}{\varepsilon + 2c} + \frac{1}{4} \frac{(2c - \varepsilon)\varepsilon \sqrt{\varepsilon^2 + 2\varepsilon c}}{\varepsilon^2 (\varepsilon + 2c)} \right) \right) \right) = \frac{1}{12} c > 0
\]

and

\[
g(c) = \frac{4c}{3\sqrt{3}} \left(\frac{3\sqrt{3} - 3}{3\sqrt{3} + 3} \right) + 2 \arctan \left(\sqrt{\frac{1}{3}} + \frac{\sqrt{27}}{8} \right) = -0.04099 c < 0 \text{ we conclude that there exists a cut-off } 0 < \varepsilon^*(c) \leq c \text{ such that for all } \varepsilon < \varepsilon^*(c), R_{\text{sim}}^{FPA} > R_{\text{seq}}^{FPA} \text{ and for all } \varepsilon > \varepsilon^*(c), R_{\text{sim}}^{FPA} < R_{\text{seq}}^{FPA}. \]

It remains to show that \(\varepsilon^*(c) \) is increasing in \(c \). The cutoff \(\varepsilon^*(c) \) is defined by the following equation

\[
g(\varepsilon) = 0 \iff \ln \left(\frac{\varepsilon + 2c - \sqrt{\varepsilon (\varepsilon + 2c)}}{\varepsilon + 2c + \sqrt{\varepsilon (\varepsilon + 2c)}} \right) + 2 \arctan \left(\frac{\varepsilon}{\varepsilon + 2c} + \frac{1}{4} \frac{(2c - \varepsilon)\varepsilon \sqrt{\varepsilon^2 + 2\varepsilon c}}{\varepsilon^2 (\varepsilon + 2c)} \right) = 0.
\]

Then \(\frac{d\varepsilon^*(c)}{dc} = -\frac{d}{d\varepsilon} \left(\ln \left(\frac{1 + 2\varepsilon - \sqrt{1 + 2\varepsilon}}{1 + 2\varepsilon + \sqrt{1 + 2\varepsilon}} \right) + 2 \arctan \left(\frac{1 + 2\varepsilon - \sqrt{1 + 2\varepsilon}}{1 + 2\varepsilon + \sqrt{1 + 2\varepsilon}} \right) + \frac{c}{4} \frac{1 + 2\varepsilon - \sqrt{1 + 2\varepsilon}}{1 + 2\varepsilon + \sqrt{1 + 2\varepsilon}} \right) = \frac{c}{\varepsilon} > 0. \)

Proof of Proposition 3

We have

\[
R_{\text{sim}}^{SPA} - R_{\text{seq}}^{SPA} = \begin{cases} \frac{1}{6} \varepsilon^2 + 2c \varepsilon - \frac{1}{4} (c + \varepsilon) & \text{if } 0 \leq \varepsilon \leq c \\ \frac{1}{6} \varepsilon^2 + 2c \varepsilon - \frac{c}{\varepsilon + c} & \text{if } c < \varepsilon \end{cases}
\]

Therefore it is easy to check that \(\varepsilon^*(c) = \frac{1}{\sqrt{3}} c < c. \) Moreover \(\varepsilon^*(c) \) is increasing in \(c. \) Finally, \(R_{\text{sim}}^{FPA} (\varepsilon^*) - R_{\text{seq}}^{FPA} (\varepsilon^*) = \frac{c^2 (1 + \sqrt{3})^2}{(1 + 2\sqrt{3})(1 + 2\sqrt{3})} \left(\frac{\varepsilon + 2c - \sqrt{\varepsilon^2 + 2\varepsilon c}}{\varepsilon + 2c + \sqrt{\varepsilon^2 + 2\varepsilon c}} \right) + 2 \arctan \left(\frac{1}{\sqrt{1 + 2\varepsilon}} + \frac{1}{2} \frac{(2c - \varepsilon)\varepsilon \sqrt{\varepsilon^2 + 2\varepsilon c}}{c^2 (\varepsilon + 2c)} \right) = 0.01\]

9597c > 0 therefore \(\varepsilon^*(c) < \varepsilon^*(c). \)

Proof of Proposition 4

We first need to prove that

\[
U_{\text{seq}}^{FPA} < U_{\text{sim}}^{FPA} < U^{SPA}
\]

where

\[
U_{\text{seq}}^{FPA} = \begin{cases} \frac{1}{12} (c + \varepsilon)^2 & \text{if } 0 \leq \varepsilon \leq c \\ \frac{1}{6} \frac{3c^2 + 2c^2}{c + \varepsilon} & \text{if } c < \varepsilon \end{cases}
\]

\[
U_{\text{sim}}^{FPA} = \frac{(c + \varepsilon)^2}{2c (2c + \varepsilon)} \left(\frac{c^2}{\sqrt{\varepsilon (2c + \varepsilon)}} \left(3 \ln \left(\frac{\varepsilon + \varepsilon + \sqrt{\varepsilon (2c + \varepsilon)}}{c} \right) - 2 \arccosh \left(\frac{c + \varepsilon}{c} \right) \right) - (c - \varepsilon) \right)
\]

\[
U^{SPA} = \frac{1}{6} \frac{3c^2 + 2c^2 + c^2}{c + \varepsilon}
\]

25
Now \(U_1^{\text{simFPA}} < U_1^{\text{SPA}} \Leftrightarrow g(\varepsilon) = \frac{1}{3} (3\varepsilon^2 + 7\varepsilon^2 + 8\varepsilon^2 + 3\varepsilon^2) \sqrt{\varepsilon(2c+\varepsilon)} - 3 \ln \left(\frac{c+\varepsilon+\sqrt{c(2c+\varepsilon)}}{c} \right) + 2 \arccosh \left(\frac{c+\varepsilon}{c} \right) > 0 \).

0. Now
\[
\frac{dg(\varepsilon)}{d\varepsilon} = \frac{d}{d\varepsilon} \left(\frac{1}{3} (3\varepsilon^2 + 7\varepsilon^2 + 8\varepsilon^2 + 3\varepsilon^2) \sqrt{\varepsilon(2c+\varepsilon)} - 3 \ln \left(\frac{c+\varepsilon+\sqrt{c(2c+\varepsilon)}}{c} \right) + 2 \arccosh \left(\frac{c+\varepsilon}{c} \right) \right)
\]
0 and for \(\varepsilon = 0 \), \(g(0) = 0 \). Therefore we conclude that indeed \(g(\varepsilon) > 0 \) for every \(\varepsilon \).

Moreover, for \(0 \leq \varepsilon \leq c \), \(U_1^{\text{seqFPA}} < U_1^{\text{simFPA}} \Leftrightarrow f(\varepsilon) = 3 \ln \left(\frac{c+\varepsilon+\sqrt{c(2c+\varepsilon)}}{c} \right) - 2 \arccosh \left(\frac{c+\varepsilon}{c} \right) - \frac{1}{6} \left(\frac{-4\varepsilon^2 + 6\varepsilon^2}{c} \right) \sqrt{\varepsilon(2c+\varepsilon)} > 0 \).

0. Now
\[
\frac{df(\varepsilon)}{d\varepsilon} = \frac{d}{d\varepsilon} \left(3 \ln \left(\frac{c+\varepsilon+\sqrt{c(2c+\varepsilon)}}{c} \right) - 2 \arccosh \left(\frac{c+\varepsilon}{c} \right) - \frac{1}{6} \left(\frac{-4\varepsilon^2 + 6\varepsilon^2}{c} \right) \sqrt{\varepsilon(2c+\varepsilon)} \right) = \frac{c(\varepsilon^2 + 2c-\varepsilon)}{2\varepsilon^4 \sqrt{\varepsilon(2c+\varepsilon)}} > 0 \]
for \(\varepsilon = 0 \), \(f(0) = 0 \). Therefore we conclude that indeed \(f(\varepsilon) > 0 \) for every \(0 \leq \varepsilon \leq c \).

For \(c \leq \varepsilon \), \(U_1^{\text{seqFPA}} < U_1^{\text{simFPA}} \Leftrightarrow h(\varepsilon) = 3 \ln \left(\frac{c+\varepsilon+\sqrt{c(2c+\varepsilon)}}{c} \right) - 2 \arccosh \left(\frac{c+\varepsilon}{c} \right) - \frac{1}{3} \left(\frac{8\varepsilon^2 + 3\varepsilon^2}{c} \right) \sqrt{\varepsilon(2c+\varepsilon)} > 0 \).

0. Now
\[
\frac{dh(\varepsilon)}{d\varepsilon} = \frac{d}{d\varepsilon} \left(3 \ln \left(\frac{c+\varepsilon+\sqrt{c(2c+\varepsilon)}}{c} \right) - 2 \arccosh \left(\frac{c+\varepsilon}{c} \right) - \frac{1}{3} \left(\frac{8\varepsilon^2 + 3\varepsilon^2}{c} \right) \sqrt{\varepsilon(2c+\varepsilon)} \right) = \frac{c^2(3\varepsilon^2 + 2\varepsilon)}{2\varepsilon^4 \sqrt{\varepsilon(2c+\varepsilon)}} > 0 \]
for \(\varepsilon = c \), \(h(c) = 3 \ln \left(2 + \sqrt{3} \right) - 2 \arccosh \left(2 \right) - \frac{3}{2} = 0.45093 > 0 \). Therefore we conclude that indeed \(h(\varepsilon) > 0 \) for every \(c \leq \varepsilon \).

Next we wish to prove that
\[
U_2^{\text{SPA}} < U_2^{\text{simFPA}} < U_2^{\text{seqFPA}}
\]
where
\[
U_2^{\text{SPA}} = \frac{1}{6} c^2 + \varepsilon
\]
\[
U_2^{\text{simFPA}} = \frac{c^2(c + \varepsilon)^2}{2\varepsilon(2c + \varepsilon) \sqrt{\varepsilon(2c + \varepsilon)}} \left(\frac{1}{2} \pi - \arcsin \left(\frac{c}{c + \varepsilon} \right) - 2 \left(\arcsin \frac{\sqrt{\varepsilon(2c + \varepsilon)}}{(c + \varepsilon)} \right) \right) + \frac{1}{2} \frac{c^2(c + 2\varepsilon)}{2 \varepsilon(2c + \varepsilon)}
\]
\[
U_2^{\text{seqFPA}} = \begin{cases}
\frac{1}{24} \frac{7\varepsilon^2 - 4\varepsilon^2 c^2}{c} & \text{if } 0 \leq \varepsilon \leq c \\
\frac{1}{6} \frac{c^2(c + \varepsilon)}{c + \varepsilon} & \text{if } c \leq \varepsilon
\end{cases}
\]

First we show that \(U_2^{\text{SPA}} < U_2^{\text{simFPA}} \). We have \(U_2^{\text{SPA}} < U_2^{\text{simFPA}} \Leftrightarrow g'(\varepsilon) = \frac{1}{2} \pi - \arcsin \left(\frac{c}{c + \varepsilon} \right) - 2 \left(\arcsin \frac{\sqrt{\varepsilon(2c + \varepsilon)}}{(c + \varepsilon)} \right) > 0 \).

\[
\frac{dg'(\varepsilon)}{d\varepsilon} = \frac{d}{d\varepsilon} \left(\frac{1}{2} \pi - \arcsin \left(\frac{c}{c + \varepsilon} \right) - 2 \left(\arcsin \frac{\sqrt{\varepsilon(2c + \varepsilon)}}{(c + \varepsilon)} \right) \right) > 0 \]
and for \(\varepsilon = 0 \), \(g'(0) = 0 \). Therefore we conclude that indeed \(g'(\varepsilon) > 0 \) for every \(\varepsilon \).

Moreover, for \(0 \leq \varepsilon \leq c \) we have \(U_2^{\text{simFPA}} < U_2^{\text{seqFPA}} \Leftrightarrow f'(\varepsilon) = \frac{1}{12} \frac{(c^2 - 3\varepsilon^2 - 2\varepsilon^2 - 12\varepsilon^2)}{c^3(c + \varepsilon)} \sqrt{c(2c + \varepsilon)} - \frac{1}{2} \pi + \arcsin \left(\frac{c}{c + \varepsilon} \right) + 2 \left(\arcsin \frac{\sqrt{\varepsilon(2c + \varepsilon)}}{(c + \varepsilon)} \right) > 0 \).

\[
\frac{df'(\varepsilon)}{d\varepsilon} = \frac{d}{d\varepsilon} \left(\frac{c^2(c + \varepsilon) + 3\varepsilon(2c + \varepsilon)}{4\varepsilon(c + \varepsilon)^2 \sqrt{2c + \varepsilon}} \right) > 0 \]
and for \(\varepsilon = 0 \), \(f'(0) = 0 \). Therefore we conclude that indeed \(f'(\varepsilon) > 0 \) for every \(0 \leq \varepsilon \leq c \).

Finally, for \(c \leq \varepsilon \) we have \(U_2^{\text{simFPA}} < U_2^{\text{seqFPA}} \Leftrightarrow h'(\varepsilon) = \frac{-1}{3} \frac{5\varepsilon^2 + 4\varepsilon^2 + 3\varepsilon^2}{c^3(c + \varepsilon)} \sqrt{\varepsilon(2c + \varepsilon)} - \frac{1}{2} \pi + \arcsin \left(\frac{c}{c + \varepsilon} \right) + 2 \left(\arcsin \frac{\sqrt{\varepsilon(2c + \varepsilon)}}{(c + \varepsilon)} \right) > 0 \).

\[
\frac{dh'(\varepsilon)}{d\varepsilon} = \frac{d}{d\varepsilon} \left(\frac{2c^2c}{(c + \varepsilon)^3 \sqrt{2c + \varepsilon}} \right) > 0 \]
and for \(\varepsilon = c \), \(h'(c) = -\frac{\sqrt{3}}{2} - \frac{1}{2} \pi + \arcsin \left(\frac{1}{2} \right) + 2 \left(\arcsin \frac{\sqrt{3}}{2} \right) = 0.18117 > 0 \). Therefore we conclude that indeed \(h'(\varepsilon) > 0 \) for every \(c \leq \varepsilon \). ■
Proof of Proposition 5

We have

\[R_{\text{sim}} - R_{\text{seq}}^{\text{SPA}} = \begin{cases}
\frac{1}{12} \frac{2c^3 - 6c^2 + c^3}{c^2} & \text{if } 0 \leq \varepsilon \leq c \\
-\frac{1}{4} \frac{(2c^2 - (2c - \varepsilon)^2)}{c} & \text{if } c \leq \varepsilon \leq 2c \\
-\frac{1}{2} c & \text{if } 2c \leq \varepsilon
\end{cases} \]

For \(\varepsilon = 0 \) we have \(R_{\text{sim}}^{\text{SPA}} - R_{\text{seq}}^{\text{FPA}} = \frac{1}{12} c \). When \(0 \leq \varepsilon \leq c \), we have \(R_{\text{sim}}^{\text{SPA}} - R_{\text{seq}}^{\text{FPA}} = 0 \iff 2c^3 - 6c^2 + c^3 = 0 \), and the solution is:

\[\varepsilon^* (c) = \left(1 - \frac{1}{2} \frac{1}{\sqrt{-\frac{7}{16} + \frac{3}{4}}} + \frac{1}{2} i \sqrt{3} \left(\frac{1}{\sqrt{-\frac{7}{16} + \frac{3}{4}}} - \frac{3}{4} \right) - \frac{1}{2} i \sqrt{\frac{7}{16} + \frac{3}{4}} \right) c = 0.44213c \]

Moreover \(\frac{d}{d\varepsilon} \left(R_{\text{sim}}^{\text{SPA}} - R_{\text{seq}}^{\text{FPA}} \right) = \frac{d}{d\varepsilon} \left(\frac{1}{12} \frac{2c^3 - 6c^2 + c^3}{c^2} \right) = -\frac{1}{2} \varepsilon \frac{2c - \varepsilon}{c^2} < 0 \). Therefore, for all \(\varepsilon < \varepsilon^* (c) \), \(R_{\text{sim}}^{\text{SPA}} > R_{\text{seq}}^{\text{FPA}} \) and for all \(\varepsilon > \varepsilon^* (c) \), \(R_{\text{sim}}^{\text{SPA}} < R_{\text{seq}}^{\text{FPA}} \). Finally when \(c \leq \varepsilon \leq 2c \) and when \(2c \leq \varepsilon \) we have \(R_{\text{sim}}^{\text{SPA}} - R_{\text{seq}}^{\text{FPA}} < 0 \). \(\blacksquare \)