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Static stability in strategic games differs from dynamic stability in only considering the 

players’ incentives to change their strategies. It does not rely on any assumptions about the 

players’ reactions to these incentives and it is thus not linked with any particular dynamics. 

This paper presents a general notion of static stability of strategies in symmetric 𝑁-player 

games and population games, of which evolutionarily stable strategy (ESS) and continuously 

stable strategy (CSS) are essentially special cases. Unlike them, the proposed stability 

concept does not depend on the existence of special structures in the game such as 

multilinear payoff functions or unidimensional strategy spaces. JEL Classification: C72. 

Keywords: Static stability, evolutionarily stable strategy, continuously stable strategy, risk 

dominance, potential games. 

1 Introduction 
A strategic game is at equilibrium when the players do not have any incentives to act 

differently than they do. In other words, at an equilibrium point, no player can increase his 

payoff by unilaterally changing his strategy. Stability differs in referring to the effects – either 

on the players’ incentives or on the actual strategy choices – of starting at another, typically 

close-by, point. Notions of stability that only examine incentives may be broadly classified as 

static, and those that look at the consequent changes of strategies may be referred to as 

dynamic. (For a brief review of some additional notions of stability in strategic games, which 

fit neither of these categories, see Appendix A.) Dynamic stability necessarily concerns a 

specific law of motion, such as the replicator dynamics. It thus depends both on the game 

itself, that is, on the payoff functions, and on the choice of dynamics. Static stability, by 

contrast, depends only on intrinsic properties of the game, and is hence arguably the more 

basic, fundamental concept. This is not an assessment of the relative importance of the two 

kinds of stability but of the logical relation between them.   

This paper introduces a notion of static stability in symmetric 𝑁-player games and 

population games that is universal in that it does not depend on structures or properties 

that only certain kinds of games have, such as multilinearity of the payoff function. Stability 

may be local or global. The former refers to a designated topology on the strategy space, 

which gives a meaning to a neighborhood of a strategy. In this paper, there are no 

restrictions on the choice of topology, which may in particular be the trivial topology, where 

the only neighborhood of any strategy is the entire strategy space. The latter choice 

corresponds to global stability, and it is most natural in the case of finite strategy spaces.  

The definition of (static) stability in this paper is based on a very simple idea, namely, 

examination of the incentive to switch to a strategy 𝑥 from another strategy 𝑦 in all states in 
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which only these two strategies are used, that is, every player uses either 𝑥 or 𝑦. The effect 

on a player’s payoff of moving from the group of 𝑦 users to that of 𝑥 users normally varies 

with the relative sizes of the two groups. Strategy 𝑦 is said to be stable if the condition that 

the change of payoff is on average negative holds for all strategies 𝑥 in some neighborhood 

of 𝑦. This stability condition represents minimal divergence from the (Nash) equilibrium 

concept. However, the latter does not imply stability and, in general, the reverse implication 

also does not hold. The paper’s focus is on stable equilibrium strategies, which satisfy both 

conditions. For a number of large, important classes of symmetric and population games, it 

examines the specific meaning of stability (in the above sense) in the class. In some cases, 

the latter turns out to be equivalent, or essentially so, to an established “native” notion of 

stability. Evolutionary stability for symmetric 𝑛 × 𝑛 games and continuous stability for 

games with unidimensional strategy spaces are examples of this. The definition outlined 

above thus turns static stability from a generic notion to a concrete, well-defined one. 

The reliance of static stability solely on incentives makes it particularly suitable for 

comparative statics analysis, in particular, study of the welfare effects of altruism and spite. 

Whether people in a group where everyone shares such sentiments are likely to fare better 

or worse than where people are indifferent to the others’ payoffs turns out to depend on 

the static stability or instability of the corresponding equilibrium strategies (Milchtaich 

2012). If the strategies are stable, welfare tends to increase with increasing altruism or 

decreasing spite, but if they are (definitely) unstable, the effect may go in the opposite 

direction. Thus, Samuelson’s (1983) “correspondence principle”, which maintains that 

conditions for stability coincide with those under which comparative statics analysis leads to 

what are usually regarded as “normal” conclusions, holds. However, this is so only if 

‘stability’ refers to the notion of static stability presented in this paper. The principle may 

not hold for other kinds of stability. In particular, dynamic stability under the continuous-

time replicator dynamics (Hofbauer and Sigmund 1998) does not guarantee a positive 

relation between altruism and welfare. Even in a symmetric 3 × 3 game, a continuously 

increasing degree of altruism may actually lower the players’ (identical material) payoffs if 

the equilibria involved are dynamically stable, which, as indicated, cannot happen if the 

equilibrium strategies are statically stable.  

2 Symmetric and population games 
A symmetric N-player game (𝑁 ≥ 1) is a real-valued (payoff1) function 𝑔: 𝑋𝑁 → ℝ that is 

defined on the 𝑁-times Cartesian product of a (finite or infinite nonempty) set 𝑋, the 

players’ common strategy space, and is invariant under permutations of its second through 

𝑁th arguments. If one player uses strategy 𝑥 and the others use 𝑦, 𝑧, … , 𝑤, in any order, the 

first player’s payoff is 𝑔(𝑥, 𝑦, 𝑧, … , 𝑤). A strategy 𝑦 is a (symmetric Nash) equilibrium 

strategy in 𝑔, with the equilibrium payoff 𝑔(𝑦, 𝑦, … , 𝑦), if it is a best response to itself, that 

is, for every other strategy 𝑥, 

𝑔(𝑦, 𝑦, … , 𝑦) ≥ 𝑔(𝑥, 𝑦, … , 𝑦). 

                                                            
1 In this paper, the payoff function and the game itself are identified.   

(1) 
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A population game, as defined in this paper, is formally a symmetric two-player game 𝑔 such 

that the strategy space 𝑋 is a convex set in a (Hausdorff real) linear topological space (for 

example, the unit simplex in a Euclidean space) and 𝑔(𝑥, 𝑦) is continuous in 𝑦 for all 𝑥 ∈ 𝑋. 

However, the game is interpreted not as representing an interaction between two specific 

players but as one involving an (effectively) infinite2 population of individuals who are 

“playing the field”. This means that an individual’s payoff 𝑔(𝑥, 𝑦) depends only on his own 

strategy 𝑥 and on the population strategy 𝑦. The latter may, for example, be the 

population’s mean strategy with respect to some nonatomic measure, which attaches zero 

weight to each individual. In this case, the meaning of the equilibrium condition,  

𝑔(𝑦, 𝑦) = max
𝑥∈𝑋

𝑔(𝑥, 𝑦), 

is that, in a monomorphic population, where everyone plays 𝑦, single individuals cannot 

increase their payoff by choosing any other strategy. Alternatively, a population game 𝑔 may 

describe a dependence of an individual’s payoff on the distribution of strategies in the 

population (Bomze and Pötscher 1989), with the latter expressed by the population strategy 

𝑦. In this case, 𝑋 consists of mixed strategies, that is, probability measures on some 

underlying space of allowable actions or (pure3) strategies, and 𝑔(𝑥, 𝑦) is linear in 𝑥 and 

expresses the expected payoff for an individual whose choice of strategy is random with 

distribution 𝑥. Provided the space 𝑋 is rich enough, the equilibrium condition (2) now means 

that the population strategy 𝑦 is supported in the collection of all best response pure 

strategies. In other words, the (possibly) polymorphic population is in an equilibrium state. 

Example 1. Random matching in a symmetric multilinear game (Bomze and Weibull 1995; 

Broom et al. 1997). The 𝑁 players in a symmetric 𝑁-player game 𝑔 are picked up 

independently and randomly from an infinite population of potential players. The strategy 

space 𝑋 is a convex set in a linear topological space, and 𝑔 is continuous and is linear in each 

of its arguments. (This assumption may be relaxed by dropping the linearity requirement for 

the first argument.) Because of the multilinearity of 𝑔, a player’s expected payoff only 

depends on his own strategy 𝑥 and on the population’s mean strategy 𝑦. Specifically, the 

expected payoff is given by 

𝑔̅(𝑥, 𝑦) ≝ 𝑔(𝑥, 𝑦, … , 𝑦). 

This defines a population game 𝑔̅: 𝑋2 → ℝ. Clearly, a strategy 𝑦 is an equilibrium strategy 

in 𝑔̅ if and only if it is an equilibrium strategy in the underlying 𝑁-player game 𝑔.  

Another example of a population game is a nonatomic congestion game with a continuum of 

identical users (Milchtaich 2017).  

                                                            
2 An infinite population may represent the limiting case of an increasingly large population, with the 
possible effect of each player’s actions on each of the other players correspondingly decreasing. 
Alternatively, it may represent all possible characteristics of players, or potential players, when the 
number of actual players is finite. 
3 “Pure” and “mixed” are relative terms. In particular, a pure strategy may itself be a probability 
vector. 

(2) 

(3) 
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3 Static stability 
By far the best known kind of static stability in symmetric two-player games and population 

games is evolutionary stability (Maynard Smith 1982).  

Definition 1. A strategy 𝑦 in a symmetric two-player game or population game 𝑔 is an 

evolutionarily stable strategy (ESS) or a neutrally stable strategy (NSS) if, for every strategy 

𝑥 ≠ 𝑦, for sufficiently small4 𝜖 > 0 the inequality  

𝑔(𝑦, 𝜖𝑥 + (1 −  𝜖)𝑦) > 𝑔(𝑥, 𝜖𝑥 + (1 −  𝜖)𝑦) 

or a similar weak inequality, respectively, holds. An ESS or NSS with uniform invasion 

barrier satisfies the stronger condition obtained by interchanging the two logical quantifiers. 

That is, for sufficiently small 𝜖 > 0 (which cannot vary with 𝑥), (4) or a similar weak 

inequality, respectively, holds for all 𝑥 ≠ 𝑦. 

Continuous stability (Eshel and Motro 1981; Eshel 1983) is another kind of static stability, 

which is applicable to games with a unidimensional strategy space. 

Definition 2. In a symmetric two-player game or population game 𝑔 with a strategy space 

that is a (finite or infinite) interval in the real line ℝ, an equilibrium strategy 𝑦 is a 

continuously stable strategy (CSS) if it has a neighborhood where, for every strategy 𝑥 ≠ 𝑦, 

for sufficiently small 𝜖 > 0 the inequality  

𝑔(𝑥 + 𝜖(𝑦 − 𝑥), 𝑥) > 𝑔(𝑥, 𝑥) 

holds and a similar inequality with 𝜖 replaced by – 𝜖 does not hold. 

In other words, a strategy 𝑦 that satisfies the “global” condition of being an equilibrium 

strategy5 is a CSS if it also satisfies the “local” condition (known as m-stability or convergence 

stability; Taylor 1989; Christiansen 1991) that every nearby strategy 𝑥 is not a best response 

to itself, specifically, any small deviation from 𝑥 towards 𝑦, but not in the other direction, 

increases the payoff.  

Yet another static notion of stability in symmetric and (with 𝑁 = 2) population games is 

local superiority (or strong uninvadability; Bomze 1991).  

Definition 3. A strategy 𝑦 in a symmetric 𝑁-player game or population game 𝑔 is locally 

superior if it has a neighborhood where, for every strategy 𝑥 ≠ 𝑦, 

𝑔(𝑦, 𝑥, … , 𝑥) > 𝑔(𝑥, 𝑥, … , 𝑥). 

Local superiority is applicable to any symmetric or population game in which the strategy 

space is a topological space, so that the notion of neighborhood is well defined.6 It does not 

rely on any other properties of the strategy space or of the payoff function – unlike ESS and 

                                                            
4 A condition holds for “sufficiently small” 𝜖 > 0 if there is some 𝛿 > 0 such that the condition holds 
for all 0 < 𝜖 < 𝛿.  
5 The original definition of CSS differs slightly from the version given here in requiring a stronger 
global condition, which is a version of ESS.  
6 A subset of 𝑋 is said to be a neighborhood of a strategy 𝑥 if its interior includes 𝑥 (Kelley 1955). 

(4) 

(5) 

(6) 
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CSS, which would not be meaningful without a linear structure. It is well known (see 

Section ‎6) that in the special case of symmetric 𝑛 × 𝑛 games local superiority is in fact 

equivalent to the ESS condition. However, for games with a unidimensional strategy space 

(Section ‎7) local superiority and CSS are not equivalent.  

The next section presents a universal notion of static stability, that is, one which is applicable 

to all symmetric and population games. It (essentially) gives ESS and CSS as special cases 

when applied to specific, suitable classes of games.  

4 A general framework 
Inequality (1) in the equilibrium condition and inequality (6) in the definition of local 

superiority both concern a player’s lack of incentive to use a particular alternative 𝑥 to his 

strategy 𝑦. In the equilibrium condition, all the other players are using 𝑦, and in local 

superiority, they all use 𝑥. Stability, as defined below, differs from both concepts in 

considering not only the incentives to be first or last to move to 𝑥 from 𝑦 but also all the 

intermediate cases. In the simplest version, described by the followings definition (and 

extended in Section ‎4.2), the same weight is attached to all cases. Put differently, stability 

requires that, when the players move one-by-one to 𝑥 from 𝑦, the corresponding changes of 

payoff are negative on average.  

Definition 4. A strategy 𝑦 in a symmetric 𝑁-player game 𝑔: 𝑋𝑁 → ℝ is stable, weakly stable 

or definitely unstable if it has a neighborhood where, for every strategy 𝑥 ≠ 𝑦, the inequality  

1

𝑁
∑(𝑔(𝑥, 𝑥, … , 𝑥⏟  ,

𝑗−1 times

𝑦,… , 𝑦⏟  
𝑁−𝑗 times

) − 𝑔(𝑦, 𝑥, … , 𝑥⏟  ,
𝑗−1 times

𝑦,… , 𝑦⏟  
𝑁−𝑗 times

))

𝑁

𝑗=1

< 0, 

a similar weak inequality or the reverse (strict) inequality, respectively, holds.  

Stability, as defined here, is a local concept. It refers to neighborhood systems of strategies, 

or equivalently to a topology on the strategy space 𝑋. The topology may be explicitly 

specified or it may be understood from the context. The latter applies when it is natural to 

view 𝑋 as a subspace of a Euclidean space or some other standard topological space, so that 

its topology is the relative one. For example, if the strategy space is an interval in the real 

line ℝ, so that strategies are simply (real) numbers, a set of strategies is a neighborhood of a 

strategy 𝑦 if and only if, for some 𝜀 > 0, every 𝑥 ∈ 𝑋 with |𝑥 − 𝑦| < 𝜀 is in the set. In a game 

with a finite number of strategies, it may seem natural to consider the discrete topology, 

that is, to view strategies as isolated. However, as discussed in Section ‎5 below, a more 

useful choice of topology in a finite game is the trivial, or indiscrete, topology. This choice 

effectively puts topology out of the way, since it means that the only neighborhood of any 

strategy is the entire strategy space. The trivial topology may be used also with an infinite 𝑋. 

Stability, weak stability or definite instability of a stategy 𝑦 with respect to the trivial 

topology automatically implies the same with respect to any other topology. Such a strategy 

𝑦 will be referred to as globally stable, weakly stable or definitely unstable, respectively. 

Note that there can be at most one globally stable strategy.  

(7) 
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In some classes of games (see Sections ‎6, ‎8 and ‎9), stability of a strategy automatically 

implies that it is an equilibrium strategy. In other games, the reverse implication holds. In 

particular, an equilibrium strategy is automatically globally stable in every symmetric game 

satisfying symmetric substitutability (see Milchtaich 2012, Section 6), which is the condition 

that for all strategies 𝑥, 𝑦, 𝑧, … , 𝑤 with 𝑥 ≠ 𝑦  

𝑔(𝑥, 𝑥, 𝑧, … , 𝑤) − 𝑔(𝑦, 𝑥, 𝑧, … , 𝑤) < 𝑔(𝑥, 𝑦, 𝑧, … , 𝑤) − 𝑔(𝑦, 𝑦, 𝑧, … , 𝑤). 

The condition implies that the expression in parentheses in (7) strictly decreases as 𝑗 

increases from 1 to 𝑁. If 𝑦 is an equilibrium strategy, then by (1) the expression is 

nonpositive for 𝑗 = 1, which means that the whole sum is negative, which proves that 𝑦 is 

globally stable.  

In general, however, the equilibrium and stability conditions are incomparable: neither of 

them implies the other. The incomparability is partially due to equilibrium being a global 

condition: all alternative strategies, not only nearby ones, are considered. However, it holds 

also with ‘equilibrium’ replaced by ‘local equilibrium’ (with the obvious meaning) or if the 

strategy space has the trivial topology, which obviates the distinction between local and 

global. A stable equilibrium strategy is a strategy that satisfies both conditions. It is not 

difficult to see that in the special case of symmetric two-player games, where the 

equilibrium condition can be written as (2) and inequality (7) can be rearranged to read  

1

2
(𝑔(𝑥, 𝑥) − 𝑔(𝑦, 𝑥) + 𝑔(𝑥, 𝑦) − 𝑔(𝑦, 𝑦)) < 0, 

a strategy 𝑦 is a stable equilibrium strategy if and only if it has a neighborhood where, for 

every 𝑥 ≠ 𝑦, the inequality 

𝑝𝑔(𝑥, 𝑥) + (1 − 𝑝)𝑔(𝑥, 𝑦) < 𝑝𝑔(𝑦, 𝑥) + (1 − 𝑝)𝑔(𝑦, 𝑦) 

holds for all 0 < 𝑝 ≤ 1/2. This condition means that the alternative strategy 𝑥 affords a 

lower expected payoff than 𝑦 against an uncertain strategy that may be 𝑥 or 𝑦, with the 

former no more likely than the latter.  

Local superiority is similar to stability in being a local condition. Moreover, for equilibrium 

strategies in symmetric two-player games, locally superiority implies stability, since (with 

𝑁 = 2) inequality (8) can be obtained by averaging (1) and (6). The same implication holds 

also for certain kinds of symmetric games with more than two players (see Section ‎9). The 

reverse implication does not hold even for equilibrium strategies in symmetric two-player 

games (see Section ‎7). 

4.1 Stability in population games  
Stability in population games can be defined by a variant of Definition 4 that replaces the 

number of players using strategy 𝑥 or 𝑦 with the size of the subpopulation to which the 

strategy applies, 𝑝 or 1 − 𝑝 respectively. Correspondingly, the sum in (7) is replaced with an 

integral.  

Definition 5. A strategy 𝑦 in a population game 𝑔:𝑋2 → ℝ is stable, weakly stable or 

definitely unstable if it has a neighborhood where, for every strategy 𝑥 ≠ 𝑦, the inequality  

(8) 

(9) 
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∫ (𝑔(𝑥, 𝑝𝑥 + (1 − 𝑝)𝑦) − 𝑔(𝑦, 𝑝𝑥 + (1 − 𝑝)𝑦)) ⅆ𝑝
1

0

< 0, 

a similar weak inequality or the reverse (strict) inequality, respectively, holds. If the 

corresponding inequality holds for all strategies 𝑥 ≠ 𝑦, then 𝑦 is globally stable, weakly 

stable or definitely unstable, respectively.  

The difference between stability in the sense of Definition 5 and in the sense of (the two 

versions of) ESS (Definition 1) boils down to a different meaning of proximity between 

population strategies. The definition of ESS reflects the view that a population strategy is 

close to 𝑦 if the latter applies to a large subpopulation, of size 1 − 𝜖, and another strategy 𝑥 

applies to a small subpopulation, of size 𝜖. By contrast, in Definition 5, the subpopulation to 

which 𝑥 applies need not be small, but 𝑥 itself is assumed close to 𝑦. The significance of this 

difference between the definitions is examined in Sections ‎6 and ‎9.  

Stability is automatically implied by local superiority if 𝑔 is linear in the first argument. This is 

because local superiority of a strategy 𝑦 implies that for all 𝑥 ≠ 𝑦 in some neighborhood of 𝑦 

1

𝑝
(𝑔(𝑝𝑥 + (1 − 𝑝)𝑦, 𝑝𝑥 + (1 − 𝑝)𝑦) − 𝑔(𝑦, 𝑝𝑥 + (1 − 𝑝)𝑦)) 

is negative for all 0 < 𝑝 ≤ 1. If 𝑔 is linear in the first argument, then this expression equals 

the integrand in (10), and therefore that inequality holds. Somewhat similarly, if 𝑔 is linear in 

the second argument, then (10) reduces to (8), which as shown above implies that every 

locally superior equilibrium strategy 𝑦 is automatically stable.  

If a population game 𝑔̅ is derived from a symmetric multilinear game 𝑔 as in Example 1, 

then, depending on whether 𝑦 is viewed as a strategy in 𝑔 or 𝑔̅, Definition 4 or 5 applies. 

However, the point of view turns out to be immaterial.  

Proposition 1. A strategy 𝑦 in a symmetric multilinear 𝑁-player game 𝑔 is stable, weakly 

stable or definitely unstable if and only if it has the same property in the population game 𝑔̅ 

defined by (3). 

Proof. For 0 ≤ 𝑝 ≤ 1, and for strategies 𝑥, 𝑦 and  

𝑥𝑝 = 𝑝𝑥 + (1 − 𝑝)𝑦, 

the linearity of 𝑔 in each of its second through 𝑁th arguments and its invariance to 

permutations of these arguments give 

𝑔̅(𝑥, 𝑥𝑝) − 𝑔̅(𝑦, 𝑥𝑝) = 𝑔(𝑥, 𝑥𝑝, … , 𝑥𝑝) − 𝑔(𝑦, 𝑥𝑝, … , 𝑥𝑝)

=∑𝐵𝑗−1,𝑁−1(𝑝)(𝑔(𝑥, 𝑥, … , 𝑥⏟  ,
𝑗−1 times

𝑦,… , 𝑦⏟  
𝑁−𝑗 times

) − 𝑔(𝑦, 𝑥, … , 𝑥⏟  ,
𝑗−1 times

𝑦,… , 𝑦⏟  
𝑁−𝑗 times

))

𝑁

𝑗=1

, 

where  

𝐵𝑗−1,𝑁−1(𝑝) = (
𝑁−1

𝑗−1
) 𝑝𝑗−1(1 − 𝑝)𝑁−𝑗 , 𝑗 = 1,2, … , 𝑁 

are the Bernstein polynomials. These polynomials satisfy the equalities 

(10) 

(11) 
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∫ 𝐵𝑗−1,𝑁−1(𝑝) ⅆ𝑝 
1

0

=
1

𝑁
, 𝑗 = 1,2, … , 𝑁. 

It therefore follows from (11) by integration that the expression obtained by replacing 𝑔 on 

the left-hand side of (10) by 𝑔̅ is equal to the expression on the left-hand side of (7). ∎ 

In the subsequent sections, Definitions 4 and 5 are applied, or restricted, to a number of 

specific classes of symmetric and population games and the results are compared with 

certain “native” notions of stability for these games. The rest of the present section is 

concerned with an extension of the above framework, which facilitates the capturing of 

some additional native notions of stability.  

4.2 𝒑̅-stability 
Stability as defined above in a sense occupies the midpoint between equilibrium and local 

superiority. It takes into consideration a player’s incentive to be the first or last to switch to 

a particular alternative strategy, but attaches to these extreme cases the same weight it 

attaches to each of the intermediate ones. This uniform distribution of weights may be 

interpreted as expressing a particular belief of the player about the total number of players 

who will be using the alternative strategy after he switches to it, with the rest using the 

original strategy. Namely, the probabilities 𝑝1, 𝑝2, … , 𝑝𝑁 that the number in question is 

1,2, … , 𝑁 are all equal, 

𝑝𝑗 =
1

𝑁
, 𝑗 = 1,2, … , 𝑁. 

Thus, unlike local superiority, in which the gain from switching from strategy 𝑦 to the 

alternative strategy 𝑥 is computed under the belief that all the other players are using 𝑥, in 

stability the expected gain is with respect to the probabilities (13), which give the expression 

on the left-hand side of (7). A straightforward generalization of both concepts is to allow any 

beliefs.  

Definition 6. For a probability vector 𝑝̅ = (𝑝1, 𝑝2, … , 𝑝𝑁), a strategy 𝑦 in a symmetric 𝑁-

player game 𝑔: 𝑋𝑁 → ℝ p̅-stable, weakly p̅-stable or definitely p̅-unstable if it has a 

neighborhood where, for every strategy 𝑥 ≠ 𝑦, the inequality  

∑𝑝𝑗(𝑔(𝑥, 𝑥, … , 𝑥⏟  ,
𝑗−1 times

𝑦,… , 𝑦⏟  
𝑁−𝑗 times

) − 𝑔(𝑦, 𝑥, … , 𝑥⏟  ,
𝑗−1 times

𝑦,… , 𝑦⏟  
𝑁−𝑗 times

))

𝑁

𝑗=1

< 0, 

a similar weak inequality or the reverse (strict) inequality, respectively, holds.  

If each of the other players switches to 𝑥 with probability 𝑝 and stays with 𝑦 with probability 

1 − 𝑝, then, depending on whether the choices are, respectively, perfectly correlated (i.e., 

identical) or independent,  

𝑝𝑗 = {

1 − 𝑝,  𝑗 = 1
0 ,  1 < 𝑗 < 𝑁
𝑝 ,  𝑗 = 𝑁

 

or  

𝑝𝑗 = (
𝑁−1

𝑗−1
) 𝑝𝑗−1(1 − 𝑝)𝑁−𝑗 = 𝐵𝑗−1,𝑁−1(𝑝), 𝑗 = 1,2, … , 𝑁. 

(12) 

(13) 

(14) 

(15) 

(16) 
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A strategy 𝑦 is dependently- or independently-stable if it is 𝑝̅-stable with 𝑝̅ = (𝑝1, 𝑝2, … , 𝑝𝑁) 

given by (15) or (16), respectively, for all 0 < 𝑝 < 1.  

The number of other players using strategy 𝑥 and the number using 𝑦 have a symmetric joint 

distribution if the two numbers are equally distributed (hence, have an equal expectation of 

(𝑁 − 1)/2), that is,  

𝑝𝑗 = 𝑝𝑁−𝑗+1, 𝑗 = 1,2, … , 𝑁. 

For 𝑝̅ = (𝑝1, 𝑝2, … , 𝑝𝑁) satisfying (17), the left-hand side of (14) is equal to the more 

symmetrically-looking expression 

𝐺𝑝̅(𝑥, 𝑦) ≝∑𝑝𝑗(𝑔(𝑥, … , 𝑥⏟  ,
𝑗 times

𝑦, … , 𝑦) − 𝑔(𝑦,… , 𝑦⏟  ,
𝑗 times

𝑥,… , 𝑥)).

𝑛

𝑗=1

 

Thus, for such 𝑝̅, a strategy 𝑦 is 𝑝̅-stable if and only if it has a neighborhood where it is the 

unique best response to itself in the symmetric two-player zero-sum game 𝐺𝑝̅: 𝑋
2 → ℝ. As a 

special case, this characterization applies to stability, that is, to 𝑝̅ given by (13). A strategy 𝑦 

is symmetrically-stable if it is 𝑝̅-stable for all 𝑝̅ satisfying (17).   

For single-player games (𝑁 = 1), stability and 𝑝̅-stability of a strategy mean the same thing, 

namely, strict local optimality: switching to any nearby alternative strategy reduces the 

payoff. For 𝑁 = 2, stability does not generally imply 𝑝̅-stability (or vice versa) but the 

implication does partially hold (specifically, holds whenever 0 < 𝑝2 ≤ 1/2) in the special 

case of an equilibrium strategy (see (9)). A full appreciation of the differences between 

stability in the sense of Definition 4 and the varieties based on 𝑝̅-stability requires looking at 

multiplayer games. One class of such games is examined in Section ‎9.  

5 Finite games and risk dominance 
In every symmetric or population game, every isolated strategy is trivially stable. Therefore, 

if the strategy space 𝑋 has the discrete topology, that is, all singletons are open sets, then all 

strategies are stable. The definition of stability is therefore of interest only for games with 

non-discrete strategy spaces. This includes games with a finite number of strategies where 

the topology on 𝑋 is the trivial one, so that stability and definite instability mean global 

stability and definite instability (see Section ‎4). The simplest (interesting) such game is a 

finite symmetric two-player game with only two strategies, strategy 1 and strategy 2, for 

example, the game with payoff matrix  

 1 2
1
2

(
3 4
1 5

) 

(where the rows correspond to the player’s own strategy and the columns to the opponent’s 

strategy). In this example, both strategies are equilibrium strategies. Strategy 1 is globally 

stable and strategy 2 is globally definitely unstable, because (using the form (7) of (8)) 

1

2
(5 − 4 + 1 − 3) < 0 <

1

2
(3 − 1 + 4 − 5). 

(17) 
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The two inequalities, which are clearly equivalent, have an additional meaning. Namely, they 

express the fact that (1,1) is the risk dominant equilibrium (Harsanyi and Selten 1988). It is 

not difficult to see that this coincidence of global stability and risk dominance holds in 

general – it is not a special property of the payoffs in this example.   

Proposition 2. In a finite symmetric two-player game with two strategies, an equilibrium 

strategy 𝑦 is globally stable if and only if the equilibrium (𝑦, 𝑦) is risk dominant.  

For a pure equilibrium strategy 𝑦, risk dominance of (𝑦, 𝑦) is equivalent also to global 

stability of 𝑦 in the mixed extension 𝑔 of the finite game, that is, when mixed strategies are 

allowed. This follows from the fact that global stability of 𝑦 in the finite game implies that 

inequality (9) holds for all 0 < 𝑝 ≤ 1/2, where 𝑥 is the other pure strategy. Because of the 

bilinearity of 𝑔, the same is then true with 𝑥 replaced by any convex combination of 𝑥 and 𝑦 

other than 𝑦 itself, which proves that 𝑦 is globally stable in 𝑔. However, since in the mixed 

extension of the finite game, which is a symmetric 2 × 2 game, the strategy space 𝑋 is 

essentially the unit interval, the natural topology on 𝑋 is not the trivial topology but the 

usual one. Stability with respect to the latter is a weaker condition than global stability. For 

example, as shown in the next section, it holds for both pure strategies if (as in the above 

example) the corresponding strategy profiles are strict equilibria.  

6 Symmetric 𝒏 × 𝒏 games and evolutionary stability 
A symmetric 𝑛 × 𝑛 game is given by a (square) payoff matrix 𝐴 with these dimensions. The 

strategy space 𝑋, whose elements are referred to as mixed strategies, is the unit simplex in 

ℝ𝑛. The interpretation is that there are 𝑛 possible actions, and a strategy 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) 

is a probability vector specifying the probability 𝑥𝑖  with which each action 𝑖 is used 

(𝑖 = 1,2, … , 𝑛). The set of all actions 𝑖 with 𝑥𝑖 > 0 is the support of 𝑥. A strategy is pure or 

completely mixed if its support contains only a single action 𝑖 (in which case the strategy 

itself may also be denoted by 𝑖) or all 𝑛 actions, respectively. The game (i.e., the payoff 

function) 𝑔:𝑋2 → ℝ is defined by 

𝑔(𝑥, 𝑦) = 𝑥T𝐴𝑦 

(where superscript T denotes transpose and strategies are viewed as column vectors). Thus, 

𝑔 is bilinear, and 𝐴 = (𝑔(𝑖, 𝑗))
𝑖,𝑗=1

𝑛
. 

A symmetric 𝑛 × 𝑛 game may be viewed either as a symmetric two-player game or as a 

population game. In the former case, Definition 4 applies, and in the latter, Definition 5 

applies. However, by Proposition 1, the two definitions of stability in fact coincide, and the 

same is true for weak stability and for definite instability. Moreover, as the next two results 

show, stability is also equivalent to evolutionary stability and to local superiority (see 

Section ‎3). It also follows from these results that every (even weakly) stable strategy in a 

symmetric 𝑛 × 𝑛 game is an equilibrium strategy, and every strict equilibrium strategy is 

stable.  

The following proposition is rather well known (Bomze and Pötscher 1989; van Damme 

1991, Theorem 9.2.8; Weibull 1995, Propositions 2.6 and 2.7; Bomze and Weibull 1995).  
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Proposition 3. For a strategy 𝑦 in a symmetric 𝑛 × 𝑛 game 𝑔, the following conditions are 

equivalent: 

(i) Strategy 𝑦 is an ESS. 

(ii) Strategy 𝑦 is an ESS with uniform invasion barrier. 

(iii) Local superiority: for every strategy 𝑥 ≠ 𝑦 in some neighborhood of 𝑦,  

𝑔(𝑦, 𝑥) > 𝑔(𝑥, 𝑥). 

(iv) For every 𝑥 ≠ 𝑦, the (weak) inequality 𝑔(𝑦, 𝑦) ≥ 𝑔(𝑥, 𝑦) holds (which means that 𝑦 

is an equilibrium strategy), and if it holds as equality, then (18) also holds. 

An NSS is characterized by similar equivalent conditions, in which the strict inequality (18) is 

replaced by a weak one.  

A completely mixed equilibrium strategy 𝑦 in a symmetric 𝑛 × 𝑛 game 𝑔 is said to be 

definitely evolutionarily unstable (Weissing 1991) if the reverse of inequality (18) holds for all 

𝑥 ≠ 𝑦.  

Theorem 1. A strategy 𝑦 in a symmetric 𝑛 × 𝑛 game 𝑔 is stable or weakly stable if and only if 

it is an ESS or NSS, respectively. A completely mixed equilibrium strategy is definitely 

unstable if and only if it is definitely evolutionarily unstable. 

Proof. The two inequalities in (iii) and (iv) of Proposition 3 together imply (8), and the same is 

true with the strict inequalities (8) and (18) both replaced by their weak versions. This 

proves that a sufficient condition for stability or weak stability of a strategy 𝑦 is that it is an 

ESS or NSS, respectively. For a completely mixed equilibrium strategy 𝑦, the inequality in (iv) 

automatically holds as equality for all 𝑥, and therefore a similar argument proves that a 

sufficient condition for definite instability of 𝑦 is that it is definitely evolutionarily unstable. 

In remains to prove necessity. For a stable strategy 𝑦, inequality (8) holds for all nearby 

strategies 𝑥 ≠ 𝑦. Therefore, 𝑦 has the property that, for every strategy 𝑥 ≠ 𝑦, for sufficiently 

small 𝜀 > 0 

 𝑔(𝜀𝑥 + (1 − 𝜀)𝑦, 𝜀𝑥 + (1 − 𝜀)𝑦) − 𝑔(𝑦, 𝜀𝑥 + (1 − 𝜀)𝑦)

+ 𝑔(𝜀𝑥 + (1 − 𝜀)𝑦, 𝑦) − 𝑔(𝑦, 𝑦) < 0. 

It follows from the bilinearity of 𝑔 that (19) is equivalent to 

(2 − 𝜀)(𝑔(𝑦, 𝑦) − 𝑔(𝑥, 𝑦)) + 𝜀(𝑔(𝑦, 𝑥) − 𝑔(𝑥, 𝑥)) > 0. 

Therefore, the above property of 𝑦 is equivalent to (iv) in Proposition 3, which proves 

that 𝑦 is an ESS. Similar arguments show that a weakly stable strategy is an NSS and that a 

definitely unstable completely mixed equilibrium strategy is definitely evolutionarily 

unstable. In the first case, the proof needs to be modified only by replacing the strict 

inequalities in (18), (19) and (20) by weak inequalities, and in the second case (in which the 

first term in (20) vanishes for all 𝑥), they need to be replaced by the reverse inequalities. ∎ 

(18) 

(19) 

(20) 
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7 Games with a unidimensional strategy space and continuous 

stability 
In a symmetric two-player game or population game where the strategy space is an interval 

in the real line ℝ, stability or instability of an equilibrium strategy, in the sense of either 

Definition 4 or 5, has a simple, familiar meaning. As shown below, if the payoff function is 

twice continuously differentiable, and with the possible exception of certain borderline 

cases, the equilibrium strategy is stable or definitely unstable if, at the (symmetric) 

equilibrium point, the graph of the best-response function, or reaction curve, intersects the 

forty-five degree line from above or below, respectively. This geometric characterization of 

stability and its differential counterpart are also shared by continuous stability (Section ‎3), 

which shows that these two notions of static stability are essentially equivalent.  

Theorem 2. Let 𝑔 be a symmetric two-player game or population game with a strategy space 

𝑋 that is a (finite or infinite) interval in the real line ℝ, and 𝑦 an interior equilibrium strategy 

(that is, one lying in the interior of 𝑋) such that 𝑔 has continuous second-order partial 

derivatives7 in a neighborhood of the equilibrium point (𝑦, 𝑦). If 

 𝑔11(𝑦, 𝑦) + 𝑔12(𝑦, 𝑦) < 0, 

then 𝑦 is stable and a CSS. If the reverse inequality holds, then 𝑦 is definitely unstable and 

not a CSS. 

Proof. Using Taylor’s theorem, it is not difficult to show that, for 𝑥 tending to 𝑦, the left-hand 

sides of both (8) and (10) can be expressed as  

𝑔1(𝑦, 𝑦)(𝑥 − 𝑦) +
1

2
(𝑔11(𝑦, 𝑦) + 𝑔12(𝑦, 𝑦))(𝑥 − 𝑦)

2 + 𝑜((𝑥 − 𝑦)2). 

Since 𝑦 is an interior equilibrium strategy, the first term in (22) is zero. Therefore, a sufficient 

condition for (22) to be negative or positive for all 𝑥 ≠ 𝑦 in some neighborhood of 𝑦 (hence, 

for 𝑦 to be stable or definitely unstable, respectively) is that 𝑔11(𝑦, 𝑦) + 𝑔12(𝑦, 𝑦) has that 

sign.   

Next, consider the CSS condition in Definition 2. It may be possible to determine whether 

this condition holds by looking at the sign of  

ⅆ

ⅆ𝜖
|
𝜖=0

(𝑔(𝑥, 𝑥) − 𝑔(𝑥 + 𝜖(𝑦 − 𝑥), 𝑥)) = 𝑔1(𝑥, 𝑥)(𝑥 − 𝑦). 

For 𝑥 tending to 𝑦, (23) is given by an expression that is similar to (22) except that it lacks the 

factor 1/2. Therefore, if (21) or the reverse inequality holds, then (23) is negative or positive, 

respectively, for all 𝑥 ≠ 𝑦 in some neighborhood of 𝑦. In the first or second case, (5) holds or 

does not hold, respectively, for 𝜖 > 0 sufficiently close to 0 and the converse is true for 

𝜖 < 0. Therefore, in the first case, 𝑦 is a CSS, and in the second case, it is not a CSS. ∎ 

                                                            
7 Partial derivatives are denoted by subscripts. For example, 𝑔12 is the mixed second-order partial 
derivative of 𝑔. 

(21) 

(22) 

(23) 
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The connection between inequality (21) and the slope of the reaction curve can be 

established as follows (Eshel 1983). If 𝑦 is an interior equilibrium strategy, then it follows 

from the equilibrium condition (2) that 𝑔1(𝑦, 𝑦) = 0 and 𝑔11(𝑦, 𝑦) ≤ 0. If the last inequality 

is in fact strict, then by the implicit function theorem there is a continuously differentiable 

function 𝑓 from some neighborhood of 𝑦 to the strategy space, with 𝑓(𝑦) = 𝑦, such that 

𝑔1(𝑓(𝑥), 𝑥) =  0 and 𝑔11(𝑓(𝑥), 𝑥) < 0 for all strategies 𝑥 in the neighborhood. Thus, 

strategy 𝑓(𝑥) is a local best response to 𝑥. By the chain rule, at the point 𝑦 

𝑓′(𝑦)  = −
𝑔12(𝑦, 𝑦)

𝑔11(𝑦, 𝑦)
. 

Therefore, (21) holds (so that 𝑦 is stable) or the reverse inequality holds (𝑦 definitely 

unstable) if and only if the slope of the function 𝑓 at 𝑦 is less or greater than 1, respectively.8 

In the first case, the reaction curve (see Figure 1), which is the graph of 𝑓, intersects the 

forty-five degree line from above (which means that the (local) fixed point index is +1; see 

Dold 1980). In the second case, the intersection is from below (and the fixed point index is 

−1).  

In a population or symmetric two-player game with a unidimensional strategy space, an 

equilibrium strategy that is locally superior is said to be a neighborhood invader strategy 

(NIS; Apaloo 1997). Unlike for symmetric 𝑛 × 𝑛 games (Section ‎6), this condition is 

essentially stronger than stability. This can be seen most easily by calculating the differential 

conditions for local superiority of an interior equilibrium strategy 𝑦. The sufficient and the 

necessary conditions differ from the corresponding conditions in Theorem 2 only in that the 

second term 𝑔12(𝑦, 𝑦) in the expression on the left-hand side of (21) is multiplied by 2. Since 

the first term 𝑔11(𝑦, 𝑦) is necessarily nonpositive (as 𝑦 is an equilibrium strategy), this makes 

the conditions more demanding than those for stability (and CSS).  

Example 2. Stability does not imply local superiority. In the population or symmetric two-

player game 𝑔(𝑥, 𝑦) = −2𝑥2 + 3𝑥𝑦 where the strategy space 𝑋 is some finite interval 

whose interior includes 0, the latter is a stable equilibrium strategy but is not an NIS, 

because 𝑔11 + 𝑔12 < 0 < 𝑔11 + 2𝑔12.      

                                                            
8 This geometric condition for static stability is weaker than the corresponding one for dynamic 
stability, which requires the absolute value of slope to be less than 1 (Fudenberg and Tirole 1995).  

Unstable Stable 

Strategy 

 

Best 
response 

Figure 1. An equilibrium strategy is stable (and a CSS) or definitely unstable (and not a CSS) if, at the 
equilibrium point, the reaction curve (thick line) intersects the forty-five degree line (thin) from above or 
below, respectively. 



14 

A similar relation between stability and local superiority also holds for the mixed extensions 

of population and symmetric two-player games with a unidimensional strategy space. A 

mixed strategy is any probability (Borel) measure on the strategy space 𝑋. If 𝑔 is bounded 

and continuous, then the game has a well-defined mixed extension where the payoff 𝑔(𝜇, 𝜈) 

for a player using a strategy 𝜇 against a strategy (or population strategy) 𝜈 is given by  

𝑔(𝜇, 𝜈) = ∫ ∫𝑔(𝑥, 𝑦) ⅆ𝜇(𝑥) ⅆ𝜈(𝑦)
𝑋𝑋

. 

With any suitable topology on the space of mixed strategies, the mixed extension is itself a 

population or symmetric two-player game, respectively, with bilinear payoff function. As 

shown in Section ‎4, every locally superior equilibrium strategy is automatically stable. In 

particular, this is so for local superiority with respect to the topology of weak convergence 

of measures, a concept called evolutionary robustness (Oechssler and Riedel 2002). 

However, the reverse implication does not hold: a stable equilibrium strategy is not 

necessarily evolutionary robust. For example, in the mixed extension of the game in Example 

2 (which is similar to Example 4 in Oechssler and Riedel 2002), the degenerate measure 𝛿0 is 

an equilibrium strategy that is not evolutionary robust, because 𝑔(𝛿𝑥 , 𝛿𝑥) > 𝑔(𝛿0, 𝛿𝑥) for all 

𝑥 ≠ 0. However, it is even globally stable, because 𝑔(𝜇, 𝜇) − 𝑔(𝛿0, 𝜇) + 𝑔(𝜇, 𝛿0) −

𝑔(𝛿0, 𝛿0) (= −4 Var − E
2, where the two symbols refer to the mean and variance of 𝜇) is 

negative for all 𝜇 ≠ 𝛿0.   

8 Potential games 
A symmetric 𝑁-player game 𝑔: 𝑋𝑁 → ℝ is called an (exact) potential game if it has an (exact) 

potential, which is a symmetric function (that is, a function that is invariant under 

permutations of its 𝑁 arguments) 𝐹: 𝑋𝑁 → ℝ such that, whenever a single player changes 

his strategy, the change in the player’s payoff is equal to the change in 𝐹. Thus, for any 

𝑁 + 1 (not necessarily distinct) strategies 𝑥, 𝑥′, 𝑦, 𝑧, … , 𝑤, 

𝐹(𝑥, 𝑦, 𝑧, … , 𝑤) − 𝐹(𝑥′, 𝑦, 𝑧, … , 𝑤) = 𝑔(𝑥, 𝑦, 𝑧, … , 𝑤) − 𝑔(𝑥′, 𝑦, 𝑧, … , 𝑤). 

It follows immediately from the definition that the potential is unique up to an additive 

constant. It also follows that a necessary condition for the existence of a potential is that the 

total change of payoff of any two players who change their strategies one after the other does 

not depend on the order of their moves: for any 𝑁 + 2 strategies 𝑥, 𝑥′, 𝑦, 𝑦′, 𝑧, … , 𝑤, 

𝑔(𝑥, 𝑦, 𝑧, … , 𝑤) − 𝑔(𝑥′, 𝑦, 𝑧, … , 𝑤) + 𝑔(𝑦, 𝑥′, 𝑧, … , 𝑤) − 𝑔(𝑦′, 𝑥′, 𝑧, … , 𝑤)

= 𝑔(𝑦, 𝑥, 𝑧, … , 𝑤) − 𝑔(𝑦′, 𝑥, 𝑧, … , 𝑤) + 𝑔(𝑥, 𝑦′, 𝑧, … , 𝑤) − 𝑔(𝑥′, 𝑦′, 𝑧, … , 𝑤). 

It is not difficult to show that this condition is also sufficient (see Monderer and Shapley 

1996, Theorem 2.8, which however refers to general, not necessarily symmetric, games, for 

which the potential function is also not symmetric). Moreover, if 𝑔 is the mixed extension of 

a finite game (which means that it is a symmetric 𝑛 × 𝑛 game; see Section ‎6 for definition 

and notation), then 𝑔 is a potential game if and only if the above condition holds for (any 

𝑁 + 2) pure strategies (Monderer and Shapley 1996, Lemma 2.10). In this case, the 

potential, like the game 𝑔 itself, is multilinear.  

(24) 
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Example 3. Symmetric 2 × 2 games. Every symmetric 2 × 2 game 𝑔, with pure strategies 1 

and 2, is a potential game, since it is easy to see that it satisfies the above condition for pure 

strategies. It is moreover not difficult to check that the following bilinear function is a 

potential for 𝑔: 

𝐹(𝑥, 𝑦) = (𝑔(1,1) − 𝑔(2,1))𝑥1𝑦1 + (𝑔(2,2) − 𝑔(1,2))𝑥2𝑦2. 

The potential 𝐹 of a symmetric potential game 𝑔 may itself be viewed as a symmetric 𝑁-

player game, indeed, a doubly symmetric one.9 It follows immediately from (24) that 𝐹 and 

𝑔 have exactly the same equilibrium strategies, stable and weakly stable strategies, and 

definitely unstable strategies. Stability and instability in this case have a strikingly simple 

characterization, which follows immediately from the observation that the sum in (7) is 

equal the difference 𝐹(𝑥, 𝑥, … , 𝑥) − 𝐹(𝑦, 𝑦, … , 𝑦) divided by 𝑁.  

Theorem 3. In a symmetric 𝑁-player game with a potential 𝐹, a strategy 𝑦 is stable, weakly 

stable or definitely unstable if and only if it is a strict local maximum point, a local maximum 

point or a strict local minimum point, respectively, of the function 𝑥 ↦ 𝐹(𝑥, 𝑥, … 𝑥).10  

The following simple result illustrates the theorem. It also makes use of Theorem 1 and 

Example 3. 

Corollary 1. In a symmetric 2 × 2 game 𝑔 with pure strategies 1 and 2, a (mixed) strategy is 

an ESS or an NSS if and only if it is a strict local maximum point or a local maximum point, 

respectively, of the quadratic function 𝛷:𝑋 → ℝ defined by  

𝛷(𝑥) =
1

2
(𝑔(1,1) − 𝑔(2,1))𝑥1

2 +
1

2
(𝑔(2,2) − 𝑔(1,2))𝑥2

2. 

8.1 Potential in population games 
For population games, which represent interactions involving many players whose individual 

actions have negligible effects on the other players, the definition of potential may be 

naturally adapted by replacing the difference on the left-hand side of (24) with a derivative.  

Definition 7. For a population game 𝑔: 𝑋2 → ℝ, a continuous function 𝛷:𝑋 → ℝ is a 

potential if for all 𝑥, 𝑦 ∈ 𝑋 and 0 < 𝑝 < 1 the derivative on the left-hand side of the 

following equality exists and the equality holds: 

ⅆ

ⅆ𝑝
𝛷(𝑝𝑥 + (1 − 𝑝)𝑦) = 𝑔(𝑥, 𝑝𝑥 + (1 − 𝑝)𝑦) − 𝑔(𝑦, 𝑝𝑥 + (1 − 𝑝)𝑦). 

Example 4. Symmetric 2 × 2 games, viewed as population games. It is easy to check that, for 

every such game 𝑔, with pure strategies 1 and 2, the function 𝛷 defined by (26) is a 

potential. Note that, unlike the function 𝐹 defined in (25), 𝛷 is a function of one variable 

only.  

                                                            
9 A symmetric game is doubly symmetric if it has a symmetric payoff function, in other words, if the 
players’ payoffs are always equal. 
10 Of course, if (𝑦, 𝑦, … , 𝑦) is a global maximum point of 𝐹 itself, then 𝑦 is in addition an equilibrium 
strategy. 

(25) 

(26) 

(27) 
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Example 4 and Corollary 1 hint at the following general result.11 As for symmetric games, 

stability and instability (here, in the sense of Definition 5) of a strategy 𝑦 in a population 

game with a potential 𝛷 is related to 𝑦 being a local extremum point of the potential. 

Theorem 4. In a population game 𝑔 with a potential 𝛷, a strategy 𝑦 is stable, weakly stable 

or definitely unstable if and only if it is a strict local maximum point, local maximum point or 

strict local minimum point of 𝛷, respectively. In the first two cases, 𝑦 is in addition an 

equilibrium strategy. If the potential 𝛷 is strictly concave, then an equilibrium strategy is a 

strict global maximum point of 𝛷, it is globally stable, and necessarily the game’s unique 

stable strategy.  

Proof. By (27), the left-hand side of (10) can be written as  

∫
ⅆ

ⅆ𝑝
𝛷(𝑝𝑥 + (1 − 𝑝)𝑦) ⅆ𝑝

1

0

. 

This integral equals 𝛷(𝑥) − 𝛷(𝑦), which proves the first part of the theorem. It also follows 

from (27), in the limit 𝑝 → 0, that for all 𝑥 and 𝑦 

ⅆ

ⅆ𝑝
|
𝑝=0+

𝛷(𝑝𝑥 + (1 − 𝑝)𝑦) = 𝑔(𝑥, 𝑦) − 𝑔(𝑦, 𝑦). 

If 𝑦 is a local maximum point of 𝛷, then the left-hand side of (28) is nonpositive, which 

proves that 𝑦 is an equilibrium strategy.  

To prove the last part of the theorem, consider an equilibrium strategy 𝑦. For any strategy 

𝑥 ≠ 𝑦, the right-, and therefore also the left-, hand side of (28) is nonpositive. If 𝛷 is strictly 

concave, this conclusion implies that the left-hand side of (27) is negative for all 0 < 𝑝 < 1, 

which proves that 𝑦 is a strict global maximum point of 𝛷. By the first part of the proof, the 

conclusion implies that 𝑦 is globally stable. ∎ 

Since by definition a potential is a continuous function, an immediate corollary of Theorem 4 

is the following result, which concerns the existence of strategies that are (at least) weakly 

stable. The result sheds light on the difference in this respect between symmetric 2 × 2 

games and, for example, 3 × 3 games. The former, which as indicated are potential games, 

always have at least one NSS, whereas for the latter, it is well known that this is not so (a 

counterexample is a variant of the rock–scissors–paper game where a draw yields a small 

positive payoff for both players; see Maynard Smith 1982, p. 20). 

Corollary 2. If a population game 𝑔 with a potential 𝛷 has a compact strategy space, then it 

has at least one weakly stable strategy. If in addition the number of such strategies is finite, 

they are all stable.  

The term potential is borrowed from physics, where it refers to a scalar field whose gradient 

gives the force field. Force is analogous to incentive here. The analogy can be taken one step 

further by presenting the payoff function 𝑔 as the differential of the potential 𝛷. This 

                                                            
11 Conversely, Example 4 and Theorem 4 below together provide an alternative proof for Corollary 1. 

(28) 
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requires 𝛷 to be defined not only on the strategy space 𝑋 (which by definition is a convex 

set in a linear topological space) but on its cone 𝑋̂, which is the collection of all space 

elements that can be written as a strategy 𝑥 multiplied by a positive number 𝑡. For example, 

if strategies are probability measures, 𝛷 needs to be defined for all positive, non-zero finite 

measures. The differential of the potential can then be defined as its directional derivative, 

that is, as the function ⅆ𝛷: 𝑋̂2 → ℝ given by12  

ⅆ𝛷(𝑥̂, 𝑦̂) =
ⅆ

ⅆ𝑡
|
𝑡=0+

𝛷(𝑡𝑥̂ + 𝑦̂). 

The differential exists if the (right) derivative in (29) exists for all 𝑥̂, 𝑦̂ ∈ 𝑋̂. 

Proposition 4. Let 𝑔: 𝑋2 → ℝ be a population game and 𝛷: 𝑋̂ → ℝ a continuous function (on 

the cone of the strategy space). A sufficient condition for the restriction of 𝛷 to 𝑋 to be a 

potential for 𝑔 is that the differential ⅆ𝛷: 𝑋̂2 → ℝ exists, is continuous in the second 

argument and satisfies  

ⅆ𝛷(𝑥, 𝑦) = 𝑔(𝑥, 𝑦), 𝑥, 𝑦 ∈ 𝑋. 

If this condition holds, then 𝑔 is necessarily linear in the first argument 𝑥.  

Proof (an outline). Using elementary arguments, the following can be established. 

Fact. A continuous real-valued function defined on an open real interval is continuously 

differentiable if and only if it has a continuous right derivative.  

Suppose that ⅆ𝛷 satisfies the specified condition. Replacing 𝑦̂ in (29) with 𝑝𝑥̂ + 𝑦̂ gives 

ⅆ𝛷(𝑥̂, 𝑝𝑥̂ + 𝑦̂) =
ⅆ

ⅆ𝑡
|
𝑡=𝑝+

𝛷(𝑡𝑥̂ + 𝑦̂), 𝑥̂, 𝑦̂ ∈ 𝑋̂, 𝑝 ≥ 0. 

By the above Fact and the continuity properties of 𝛷 and ⅆ𝛷, for 0 < 𝑝 < 1 the right 

derivative in (31) is actually a two-sided derivative and it depends continuously on 𝑦̂. 

Therefore, by (30), the right-hand side of (27) is equal to the expression 

ⅆ

ⅆ𝑡
|
𝑡=𝑝

𝛷(𝑡𝑥 + (1 − 𝑝)𝑦) −
ⅆ

ⅆ𝑡
|
𝑡=1−𝑝

𝛷(𝑝𝑥 + 𝑡𝑦), 

which by the chain rule is equal to the derivative on the left-hand side of (27). Hence, that 

equality holds. Another corollary of (31) is the identity 

∫ ⅆ𝛷(𝑥̂, 𝑝𝑥̂ + 𝑦̂) ⅆ𝑝
𝑡

0

= 𝛷(𝑡𝑥̂ + 𝑦̂) − 𝛷(𝑦̂), 𝑥̂, 𝑦̂ ∈ 𝑋̂, 𝑡 > 0, 

which, used twice, gives  

∫ (ⅆ𝛷(𝑧̂, 𝑝𝑧̂ + 𝜆𝑡𝑥̂ + 𝑦̂) + ⅆ𝛷(𝑥̂, 𝑝𝑥̂ + 𝑦̂)) ⅆ𝑝
𝜆𝑡

0

= 𝛷(𝜆𝑡𝑧̂ + 𝜆𝑡𝑥̂ + 𝑦̂) − 𝛷(𝜆𝑡𝑥̂ + 𝑦̂) 

                                                            
12 Note that, in the directional derivative ⅆ𝛷, the direction is specified by the first argument. 

(29) 

(30) 

(31) 
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+𝛷(𝜆𝑡𝑥̂ + 𝑦̂) − 𝛷(𝑦̂) = 𝛷(𝜆𝑡𝑧̂ + 𝜆𝑡𝑥̂ + 𝑦̂) − 𝛷(𝑦̂), 𝑥̂, 𝑦̂, 𝑧̂ ∈ 𝑋̂, 𝜆, 𝑡 > 0. 

Dividing the right- and left-hand sides by 𝑡 and taking the limit 𝑡 → 0+ gives the identity 

𝜆 ⅆ𝛷(𝑧̂, 𝑦̂) + 𝜆 ⅆ𝛷(𝑥̂, 𝑦̂) = ⅆ𝛷(𝜆𝑧̂ + 𝜆𝑥̂, 𝑦̂), 𝑥̂, 𝑦̂, 𝑧̂ ∈ 𝑋̂, 𝜆 > 0. 

The identify proves that ⅆ𝛷 (hence, 𝑔) is linear in the first argument. ∎ 

9 Symmetric multilinear games 
Symmetric multilinear games are the 𝑁-player generalization of the two-player games 

considered in Section ‎6. The strategy space 𝑋 is the unit simplex in a Euclidean space and 

𝑔: 𝑋𝑁 → ℝ is linear in each of the 𝑁 arguments.  

As Proposition 1 shows, stability in a symmetric multilinear game 𝑔 is equivalent to stability 

in the population game 𝑔̅ defined by (3). Requiring the same for evolutionary stability (which 

for a population game is given by Definition 1) yields the following natural definition. 

A strategy 𝑦 in a symmetric multilinear game 𝑔 is said to be an ESS if, for every 𝑥 ≠ 𝑦, for 

sufficiently small 𝜖 > 0 the strategy 𝑥𝜖 =  𝜖𝑥 + (1 −  𝜖)𝑦 satisfies  

𝑔(𝑦, 𝑥𝜖 , … , 𝑥𝜖) > 𝑔(𝑥, 𝑥𝜖 , … , 𝑥𝜖). 

Strategy 𝑦 is said to be an ESS with uniform invasion barrier if it satisfies the stronger 

condition that, for sufficiently small 𝜖 > 0 (which cannot vary with 𝑥), inequality (32) holds 

for all 𝑥 ≠ 𝑦. Note that for the existence of a uniform invasion barrier it suffices that the last 

condition holds for some 0 < 𝜖 < 1, since this automatically implies the same for all smaller 𝜖.  

An equivalent definition of ESS is given by a generalization of condition (iv) in Proposition 3 

(Broom et al. 1997; see also the proof of Lemma 3 below).  

Lemma 1. A strategy 𝑦 in a symmetric multilinear game 𝑔 is an ESS if and only if, for every 

𝑥 ≠ 𝑦, at least one of the 𝑁 terms in the sum on the left-hand side of (7) is not zero, and the 

first such term is negative. In particular, an ESS is necessarily an equilibrium strategy (since 

the first term in (7) must be nonpositive). 

Unlike in the special case 𝑁 = 2 (Proposition 3), in a general multilinear game not every ESS 

has a uniform invasion barrier. It is easy to see that a sufficient condition for the existence of 

a uniform invasion barrier is that the ESS is locally superior, and this condition is in fact also 

necessary (Bomze and Weibull 1995, Theorem 3; Lemma 2 below). This raises the question 

of how stability (in the sense of Definition 4) compares with the two nonequivalent notions 

of ESS. As the following theorem shows, it is equivalent to neither of them, and instead 

occupies an intermediate position: weaker than one and stronger than the other. The two 

ESS conditions are also comparable with the stronger stability conditions derived from 

𝑝̅-stability (see Section ‎4.2). In fact, two of the latter turn out to be equivalent to ESS with 

uniform invasion barrier.  

Theorem 5. In a symmetric multilinear game, with 𝑁 ≥ 2 players, the following implications 

and equivalences among the possible properties of a strategy hold:  

(32) 
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ESS ⇐ stable ⇐ ESS with uniform invasion barrier ⇔ locally superior ⇔ dependently-

stable ⇔ independently-stable ⇐ symmetrically-stable. 

Each of the three implications is actually an equivalence in the special case of two-player 

games, but not in general.  

The proof of Theorem 5 uses the following two lemmas, which hold for every game 𝑔 as in 

the theorem. The first lemma uses the following terminology. A strategy 𝑦 in 𝑔 is 

conditionally locally superior if it has a neighborhood where inequality (6) holds for every 

strategy 𝑥 ≠ 𝑦 that satisfies the reverse of inequality (1). 

Lemma 2. For any 0 < 𝑝 < 1, the following properties of an equilibrium strategy 𝑦 are 

equivalent, and imply that 𝑦 is stable: 

(i) Local superiority 

(ii) Conditional local superiority  

(iii) 𝑝̅-stability with 𝑝̅ = (𝑝1, 𝑝2, … , 𝑝𝑁) given by (15)  

(iv) 𝑝̅-stability with 𝑝̅ = (𝑝1, 𝑝2, … , 𝑝𝑁) given by (16) 

(v) ESS with uniform invasion barrier. 

Proof. The implication (i) ⇒ (iii) is trivial: inequality (1) (from the equilibrium condition) and 

inequality (6) together give 

(1 − 𝑝)(𝑔(𝑥, 𝑦, … , 𝑦) − 𝑔(𝑦, 𝑦, … , 𝑦)) + 𝑝(𝑔(𝑥, 𝑥, … , 𝑥) − 𝑔(𝑦, 𝑥, … , 𝑥)) < 0. 

Clearly, if the first term on the left-hand side of the last inequality is nonnegative, then the 

second term must be negative. This proves that (iii) ⇒ (ii).  

To prove that (ii) ⇒ (i), assume that this implication does not hold: strategy 𝑦 is not locally 

superior but it is conditionally locally superior. The assumption implies that there is a 

sequence (𝑥𝑘)𝑘≥1 of strategies that converges to 𝑦 such that for all 𝑘  

𝑔(𝑥𝑘 , 𝑥𝑘 , … , 𝑥𝑘) − 𝑔(𝑦, 𝑥𝑘 , … , 𝑥𝑘) ≥ 0 

and 

𝑔(𝑥𝑘 , 𝑦, … , 𝑦) − 𝑔(𝑦, 𝑦, … , 𝑦) < 0. 

The last inequality means that, when all the other players use 𝑦, strategy 𝑥𝑘  is not a best 

response. Therefore, the latter can be presented as  

𝑥𝑘 = 𝛼𝑘𝑧𝑘 + (1 − 𝛼𝑘)𝑤𝑘 , 

where 0 < 𝛼𝑘 ≤ 1, 𝑧𝑘 is a strategy whose support includes only pure strategies that are 

not best responses when everyone else uses the equilibrium strategy 𝑦, and 𝑤𝑘  is a strategy 

that is a best response, i.e., 

𝑔(𝑤𝑘 , 𝑦, … , 𝑦) − 𝑔(𝑦, 𝑦, … , 𝑦) = 0. 

Since there are only finitely many pure strategies, there is some 𝛿 > 0 such that for all 𝑘 

(33) 

(34) 

(35) 
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𝑔(𝑧𝑘 , 𝑦, … , 𝑦) − 𝑔(𝑦, 𝑦, … , 𝑦) < −2𝛿. 

By (33), (34), (35) and (36), for all 𝑘 

(𝑔(𝑥𝑘 , 𝑥𝑘 , … , 𝑥𝑘) − 𝑔(𝑥𝑘 , 𝑦, … , 𝑦)) − (𝑔(𝑦, 𝑥𝑘 , … , 𝑥𝑘) − 𝑔(𝑦, 𝑦, … , 𝑦)) > 2𝛿𝛼𝑘 . 

As 𝑘 → ∞, the two expressions in parentheses tend to zero, since 𝑥𝑘 → 𝑦. Therefore, 

𝛼𝑘 → 0, which by (34) implies that 𝑤𝑘 → 𝑦. Since 𝑦 is conditionally locally superior and (35) 

holds for all 𝑘, for almost all 𝑘 (that is, all 𝑘 > 𝐾, for some integer 𝐾)  

𝑔(𝑤𝑘 , 𝑤𝑘 , … , 𝑤𝑘) − 𝑔(𝑦, 𝑤𝑘 , … , 𝑤𝑘) ≤ 0. 

 Therefore, for almost all 𝑘 

∑
𝐵𝑗−1,𝑁−1(𝛼𝑘)

𝛼𝑘
(𝑔(𝑤𝑘 , 𝑧𝑘 , … , 𝑧𝑘⏟    ,

𝑗−1 times

𝑤𝑘 , … , 𝑤𝑘⏟      
𝑁−𝑗 times

) − 𝑔(𝑦, 𝑧𝑘 , … , 𝑧𝑘⏟    ,
𝑗−1 times

𝑤𝑘 , … , 𝑤𝑘⏟      
𝑁−𝑗 times

))

𝑁

𝑗=2

=
1

𝛼𝑘
((𝑔(𝑤𝑘 , 𝑥𝑘 , … , 𝑥𝑘) − 𝑔(𝑦, 𝑥𝑘 , … , 𝑥𝑘)) − (1 − 𝛼𝑘)

𝑁−1(𝑔(𝑤𝑘 , 𝑤𝑘 , … , 𝑤𝑘) − 𝑔(𝑦, 𝑤𝑘 , … , 𝑤𝑘)))

≥
1

𝛼𝑘
(𝑔(𝑤𝑘 , 𝑥𝑘 , … , 𝑥𝑘) − 𝑔(𝑦, 𝑥𝑘 , … , 𝑥𝑘)). 

The sum on the left-hand side tends to zero as 𝑘 → ∞, since 𝑤𝑘 → 𝑦. Therefore, for almost 

all 𝑘 the expression on the right-hand side is less than 𝛿, so that 

𝑔(𝑤𝑘 , 𝑥𝑘 , … , 𝑥𝑘) − 𝑔(𝑦, 𝑥𝑘 , … , 𝑥𝑘) < 𝛼𝑘𝛿. 

On the other hand, by (36) and since 𝑥𝑘 → 𝑦, for almost all 𝑘 

𝛼𝑘 ((𝑔(𝑦, 𝑦, … , 𝑦) − 𝑔(𝑧𝑘 , 𝑦, … , 𝑦)) + (𝑔(𝑧𝑘 , 𝑦, … , 𝑦) − 𝑔(𝑧𝑘 , 𝑥𝑘 , … , 𝑥𝑘))

+ (𝑔(𝑤𝑘 , 𝑥𝑘 , … , 𝑥𝑘) − 𝑔(𝑤𝑘 , 𝑦, … , 𝑦))) > 𝛼𝑘𝛿. 

By (34) and (35), the left-hand side is equal to 𝑔(𝑤𝑘 , 𝑥𝑘 , … , 𝑥𝑘) − 𝑔(𝑥𝑘 , 𝑥𝑘 , … , 𝑥𝑘), which by 

(33) is less than or equal to  

𝑔(𝑤𝑘 , 𝑥𝑘 , … , 𝑥𝑘) − 𝑔(𝑦, 𝑥𝑘 , … , 𝑥𝑘). 

This contradicts (37). The contradiction proves that (ii) ⇒ (i). 

To prove that (i) ⇒ (iv), assume that 𝑦 is locally superior, and thus has a convex 

neighborhood 𝑈 where (6) holds for every strategy 𝑥 ≠ 𝑦. By the convexity of 𝑈 and the 

linearity of 𝑔 in the first argument, for every 𝑥 ∈ 𝑈 ∖ {𝑦}  

𝑔(𝑥, 𝑥𝑝, … , 𝑥𝑝) − 𝑔(𝑦, 𝑥𝑝, … , 𝑥𝑝) < 0, 

where 𝑥𝑝 =  𝑝𝑥 + (1 −  𝑝)𝑦 . By the second equality in (11), inequality (38) is equivalent to 

(14), with (𝑝1, 𝑝2, … , 𝑝𝑁) given by (16). Thus, 𝑦 has property (iv).  

Clearly, the above arguments also apply with 𝑝 replaced by any other number in (0,1). 

Integration over this interval therefore gives that, for every 𝑥 ∈ 𝑈 ∖ {𝑦}, (14) holds also with 

(36) 

(37) 

(38) 
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𝑝1, 𝑝2, … , 𝑝𝑁 given (not by (16) but) by the left-hand side of the corresponding equality in 

(12). The equalities in (12) therefore prove that the locally superior strategy 𝑦 is stable. 

The proof of the reverse implication, (iv) ⇒ (i), is rather similar. As shown above, 𝑦 has 

property (iv) if and only if it has a neighborhood 𝑈 such that (38) holds for all strategies 

𝑥 ≠ 𝑦 in 𝑈, or equivalently (6) holds for all 𝑥 ≠ 𝑦 in the set 

𝑈𝑝 = { 𝑝𝑧 + (1 − 𝑝)𝑦 ∣∣ 𝑧 ∈ 𝑈 }. 

In this case, 𝑦 is locally superior, since 𝑈𝑝 is also a neighborhood of 𝑦. Indeed, for any 

neighborhood 𝑈 of any strategy 𝑦, {𝑈𝜖}0<𝜖<1 is a base for the neighborhood system of 𝑦 

(see Bomze and Pötscher 1989, Lemma 42; Bomze 1991, Lemma 6).   

The special case 𝑈 = 𝑋 of the last topological fact gives the equivalence (i) ⇔ (v). A strategy 

𝑦 has a neighborhood where (6) holds for all 𝑥 ≠ 𝑦 if and only if it has such a neighborhood 

of the form 𝑋𝜖, for some 0 < 𝜖 < 1. ∎ 

Lemma 3. For a probability vector 𝑝̅ = (𝑝1, 𝑝2, … , 𝑝𝑁) with 𝑝𝑁 > 0, every 𝑝̅-stable strategy 𝑦 

is an ESS.  

Proof. Let 𝑝̅ be a probability vector as above. For distinct strategies 𝑥 and 𝑦 and 0 < 𝜖 < 1, 

∑𝑝𝑘(𝑔(𝑥𝜖 , 𝑥𝜖 , … , 𝑥𝜖⏟    ,
𝑘−1 times

𝑦,… , 𝑦⏟  
𝑁−𝑘 times

) − 𝑔(𝑦, 𝑥𝜖 , … , 𝑥𝜖⏟    ,
𝑘−1 times

𝑦,… , 𝑦⏟  
𝑁−𝑘 times

))

𝑁

𝑘=1

= ∑𝑝𝑘𝜖∑𝐵𝑗−1,𝑘−1(ϵ)(𝑔(𝑥, 𝑥, … , 𝑥⏟  ,
𝑗−1 times

𝑦, … , 𝑦⏟  
𝑁−𝑗 times

) − 𝑔(𝑦, 𝑥, … , 𝑥⏟  ,
𝑗−1 times

𝑦,… , 𝑦⏟  
𝑁−𝑗 times

))

𝑘

𝑗=1

𝑁

𝑘=1

 

=∑(∑(
𝑘−1

𝑗−1
) (1 − ϵ)𝑘−𝑗𝑝𝑘

𝑁

𝑘=𝑗

)

𝑁

𝑗=1

(𝑔(𝑥, 𝑥, … , 𝑥⏟  ,
𝑗−1 times

𝑦,… , 𝑦⏟  
𝑁−𝑗 times

) − 𝑔(𝑦, 𝑥, … , 𝑥⏟  ,
𝑗−1 times

𝑦,… , 𝑦⏟  
𝑁−𝑗 times

)) ϵ𝑗 . 

The expression on the right-hand side is negative for sufficiently small 𝜖 > 0 if and only if at 

least one of its 𝑁 terms is not zero and the first such term (that is, the nonzero term ending 

with the smallest power of 𝜖) is negative. Observe that the sign of each term is completely 

determined by the sign of the second expression in parentheses (the difference). The first 

term (the inner sum) is necessarily positive, since 𝑝𝑁 > 0. This observation proves that if 𝑦 is 

𝑝̅-stable, then the condition in Lemma 1 holds. Note, parenthetically, that in the special case 

𝑝𝑁 = 1 the observation also proves Lemma 1 itself. ∎ 

Proof of Theorem 5. By Lemma 3, a strategy that has any of the seven properties in the 

theorem is an ESS, and hence (by Lemma 1) an equilibrium strategy. An immediate corollary 

of Lemma 2 is that, for an equilibrium strategy, the properties of local superiority, 

dependent- and independent stability, and ESS with uniform invasion barrier are all 

equivalent, and imply stability. The special case 𝑝 = 1/2 of the same lemma (specifically, of 

the implication (iii) ⇒ (i)) shows that symmetric-stability implies local superiority.  

With only two players (𝑁 = 2), there is no difference between stability and symmetric-

stability, and thus the equivalence of all the properties in the theorem follows from the first 
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part of the proof and Proposition 3. The counterexamples in Example 5 below (where 𝑁 =

4) complete the proof. ∎ 

Example 5. A symmetric multilinear four-player game 𝑔 is defined as follows. There are 

three pure strategies, so that the strategy space 𝑋 consists of all probability vectors 

𝑥 = (𝑥1, 𝑥2, 𝑥3) (with 𝑥1 + 𝑥2 + 𝑥3 = 1). The payoff of a player using strategy 𝑥 against 

opponents using strategies 𝑦 = (𝑦1, 𝑦2, 𝑦3), 𝑧 = (𝑧1, 𝑧2, 𝑧3) and 𝑤 = (𝑤1, 𝑤2, 𝑤3) is given by 

𝑔(𝑥, 𝑦, 𝑧, 𝑤) = ∑ 𝑔𝑖𝑗𝑘𝑙𝑥𝑖𝑦𝑗𝑧𝑘𝑤𝑙

3

𝑖,𝑗,𝑘,𝑙=1

. 

It does not matter which of the other players uses which strategy, since the coefficients 

(𝑔𝑖𝑗𝑘𝑙)𝑖,𝑗,𝑘,𝑙=1
3  that define the game satisfy the symmetry condition 𝑔𝑖𝑗𝑘𝑙 = 𝑔𝑖𝑗′𝑘′𝑙′, for all 𝑖 

and all triplets (𝑗, 𝑘, 𝑙) and (𝑗′, 𝑘′, 𝑙′) that are permutations of one another. There are three 

versions of the game, with different coefficients, as detailed in the following table: 

Coefficient Version 1 Version 2 Version 3 

𝑔2211 −2 −18 −4 
𝑔2221 0 −16 −4 
𝑔3221 4 4 0 
𝑔2331 4 20 4 
𝑔2222 3 −9 −3 
𝑔2332 4 12 2 
𝑔3333 −3 −15 −4 
𝑔2322 4 4 0 

Coefficients that are not listed in the table and cannot be deduced from it by using the 

symmetry condition are zero. In all three versions of the game, the strategy 𝑦 = (1,0,0) is an 

equilibrium strategy, since if all the other players use 𝑦, the payoff is zero regardless of the 

player’s own strategy. However, the stability properties of 𝑦 are different for the three 

versions. 

Claim. The equilibrium strategy 𝑦 = (1,0,0) is an ESS in all three versions of the game, but it 

is stable only in versions 2 and 3, independently-stable (equivalently, dependently-stable, 

locally superior, ESS with uniform invasion barrier) only in version 3, and symmetrically-

stable in none of them.  

The Claim has some significance beyond the present context. The fact that, in version 2 of 

the game, the ESS (1,0,0) does not have a uniform invasion barrier and is not locally 

superior refutes two published results. A theorem of Crawford (1990), which is reproduced 

by Hammerstein and Selten (1994, Result 7), implies that every ESS in a symmetric 

multilinear game has a uniform invasion barrier. However, there is a known error in the 

proof of that theorem (Bomze and Pötscher 1993). Theorem 2 of Bukowski and Miekisz 

(2004) asserts that local superiority and the ESS condition are equivalent even for 𝑁 > 2. 

However, these authors employ a definition of ESS that is different from that used here (and 

in other papers) in that it requires the existence of a uniform invasion barrier. 
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In view of Theorem 5, to prove the Claim it suffices to show that 𝑦 is: (i) an ESS but not 

stable in version 1, (ii) stable but not independently-stable in version 2, and 

(iii) independently-stable but not symmetrically-stable in version 3.  

In version 1 of 𝑔, (14) reads  

−2𝑝2𝑥2
2 − 4𝑝3(𝑥1𝑥2

2 − 𝑥2
2𝑥3 − 𝑥2𝑥3

2)

− 3𝑝4(2𝑥1
2𝑥2
2 − 4𝑥1𝑥2

2𝑥3 − 4𝑥1𝑥2𝑥3
2 − 𝑥2

4 − 4𝑥2
2𝑥3
2 + 𝑥3

4 − 4𝑥2
3𝑥3) < 0. 

Stability corresponds to 𝑝̅ = (𝑝1, 𝑝2, 𝑝3, 𝑝4) = (1/4,1/4,1/4,1/4), for which the above 

inequality can be simplified to 

7

16
𝑥2
2 < (𝑥2−

3

8
(1 − 𝑥1)

2)2. 

There are strategies 𝑥 = (𝑥1, 𝑥2, 𝑥3) arbitrarily close to but different from (1,0,0) for which 

this inequality does not hold. For example, this is so whenever 𝑥2 = (3/8)(1 − 𝑥1)
2 > 0. 

This proves that the equilibrium strategy is not stable. To prove that it is nevertheless an 

ESS, consider (32), which in the present case can be simplified to   

2𝑥2
2 < (2𝑥2 − 𝜖(1 − 𝑥1)

2)2. 

For every (fixed) strategy 𝑥 = (𝑥1, 𝑥2, 𝑥3) ≠ (1,0,0), this inequality holds for sufficiently 

small 𝜖 > 0. Therefore, (1,0,0) is an ESS.  

In version 2 of the game, for 𝑝̅ = (1/4,1/4,1/4,1/4) inequality (14) can be simplified to  

−
1

80
𝑥2
2 < (𝑥2−

3

8
(1 − 𝑥1)

2)2. 

This inequality holds for all strategies 𝑥 other than (1,0,0), and therefore the latter is stable. 

However, it is not independently-stable, since for 𝑝̅ = (1/8,3/8,3/8,1/8) inequality (14) can 

be simplified to 

1

10
𝑥2
2 < (𝑥2 −

1

4
(1 − 𝑥1)

2)2. 

This inequality does not hold for strategies 𝑥 with 𝑥2 = (1/4)(1 − 𝑥1)
2 > 0, which exist in 

every neighborhood of (1,0,0). 

Finally, in version 3 of the game, for 𝑝̅ = (1/8 ,3/8,3/8,1/8) inequality (14) can be 

simplified to  

−𝑥3
4 < 3(4𝑥2 − (𝑥2 + 𝑥3)

2)2. 

This inequality holds for all strategies 𝑥 other than (1,0,0). Therefore, by Lemma 2 (which 

implies that, if (iv) holds for 𝑝 = 1/2, it holds for all 0 < 𝑝 < 1), (1,0,0) is independently-

stable. However, it is not symmetrically-stable. There are probability vectors 𝑝̅ satisfying (17) 

for which (14) does not hold for some strategies 𝑥 arbitrarily close to (1,0,0). For examples, 

for 𝑝̅ = (1/20,9/20,9/20,1/20), inequality (14) can be simplified to 

24𝑥2
2 −

1

3
𝑥3
4 < (8𝑥2 − (1 − 𝑥1)

2)2. 
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For strategies 𝑥 with 𝑥2 = (1/8)(1 − 𝑥1)
2, this inequality is equivalent to (1 − 𝑥1)

4 −

32(1 − 𝑥1)
3 + 384(1 − 𝑥1)

2 − 2048(1 − 𝑥1) > 512. Hence, it does not hold if 𝑥1 is 

sufficiently close to 1. This completes the proof of the Claim. 

Appendix A. Other notions of stability  
Static and dynamic stability are not the only kinds of stability in strategic games considered 

in the game-theoretic literature. For completeness, some of the other categories are briefly 

reviewed below.  

One kind of stability refers to the effects of perturbations of the players’ strategy spaces 

(e.g., allowing only completely mixed strategies) or a combination of perturbations of the 

strategy spaces and of the strategies themselves. The requirement that a strategy profile in a 

strategic game is stable against these kinds of perturbations gives the notions of (trembling-

hand) perfect equilibrium (Selten 1975), proper equilibrium (Myerson 1978), strict 

perfection (Okada 1981) and (strategic) stability and full stability (Kohlberg and Mertens 

1986). Stability may also refer to the effects on a given equilibrium of perturbations of the 

payoff functions. Essentiality (Wu and Jiang 1962) and strong stability (Kojima et al. 1985) 

are examples of this kind of stability, which has interesting links with some of the other 

kinds. For example, in a multilinear game, every essential equilibrium is strictly perfect (van 

Damme 1991, Theorem 2.4.3), and in a symmetric 𝑛 × 𝑛 game, every regular ESS is essential 

(Selten 1983). Another example of a link between different kinds of stability is the finding 

that, in several classes of games, the (local) degree of an equilibrium (or of a connected 

component of equilibria) is equal to its index (Govindan and Wilson 1997; Demichelis and 

Germano 2000). The index of an equilibrium is related to its asymptotic stability or instability 

with respect to a large class of natural dynamics, which determine how strategies in the 

game change over time. The degree, by contrast, expresses a topological property of the 

equilibrium when viewed as a point in a manifold that includes the various equilibria of 

different games (Ritzberger 2002). The index (= degree) of an equilibrium is connected with 

stability also in that, in a nondegenerate bimatrix game, it determines whether the 

equilibrium can be made the unique equilibrium by extending the game: adding one or more 

pure strategies to one of the players (von Schemde and von Stengel 2008). 

Whether any of these alternative notions can be linked with statics stability is yet to be 

determined.  
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