Iterated expectations, compact spaces, and common priors

Ziv Hellman

The Department of Mathematics and The Centre for the Study of Rationality, The Hebrew University of Jerusalem, Giv’at Ram, Jerusalem 91904, Israel

Abstract

Extending to infinite state spaces that are compact metric spaces a result previously attained by D. Samet solely in the context of finite state spaces, a necessary and sufficient condition for the existence of a common prior for several players is given in terms of the players’ present beliefs only. A common prior exists if and only if for each random variable it is common knowledge that all Cesàro means of iterated expectations with respect to any permutation converge to the same value; this value is its expectation with respect to the common prior. It is further shown that compactness is a necessary condition for some of the results.

1. Introduction

The common prior assumption, ever since it was introduced into the study of games with incomplete information by Harsányi (1967–1968), posits that all women and men are “created equal” with respect to probability assessments in the absence of information — hence the term common prior — and all differences in probabilities should, in principle, be traced to asymmetries in information received over time. The idea has become very pervasive, and in most applications of type spaces to economics it is assumed that players’ beliefs can indeed be derived from a common prior by Bayesian updating. A prior probability can be interpreted as the beliefs of a player in a previous period. In many models, however, any previous period is either fictional or irrelevant to the matter being studied. It is also clear that there are many plausible models of type spaces in which it is impossible for the players to have arrived at their current beliefs via updating from a common prior. This leads naturally to the question of whether a criterion can be identified by which one can tell, using the current beliefs of the players, that they have a common prior.

Aumann (1976), in his celebrated No Disagreements theorem, presented a necessary condition for the existence of a common prior in terms of present beliefs: if there is a common prior, then it is impossible to have common knowledge of difference in the beliefs of any given event. Numerous authors extended this result and applied it to interactions between agents in various situations. The typical result is a “no-bet” or “no-trade” theorem (for example, Milgrom and Stokey, 1982, or Sebenius and Geanakoplos, 1983) — agents who start with common prior distributions will never agree to engage in speculative trade based on differences in private information that they subsequently receive. As soon as it becomes common knowledge that they wish to trade, their expectations for the value of assets in question become identical.

In the 1990s, it was shown, by several researchers independently, that the converse statement also holds, thus leading to a characterization of the existence of common priors that may be termed the No Betting characterization: a necessary and sufficient condition for the existence of a common prior is that there is no bet for which it is always common knowledge...
that all players expect a positive gain. The most accessible proof of this result is in Samet (1998b). It was proved by Morris (1994) for finite type spaces and independently by Feinberg (2000) for compact type spaces. Bonanno and Nehring (1999) proved it for finite type spaces with two agents.

As Samet (1998a) points out, this characterization satisfactorily solves the question of how one can tell when players have a common prior, but it fails to express the common prior in a meaningful way; the fact that disagreement regarding the outcome of a bet cannot be common knowledge may guarantee the existence of a common prior, but it tells us nothing about this common prior. He then proceeds to present a very different necessary and sufficient condition for the existence of a common prior that not only identifies the common prior when it exists, but also provides an epistemically meaningful interpretation to it.

This condition is expressed intuitively in Samet (1998a) in a colorful story. Imagine that Adam and Eve, who have both excelled in their studies at the same school of economics, are asked what return they expect on IBM stock. Having been exposed to different sources of information, we should not be surprised if the two provide different answers. But we can then go on to ask Eve what she thinks Adam’s answer was. Being a good Bayesian, she can compute the expectation of various answers and come up with Adam’s expected answer. Likewise, Adam can provide us with what he expects was Eve’s answer to that question. This process can continue, moving back and forth between Eve and Adam, theoretically forever. There are, in this example, two possible infinite sequences of alternating expectations, one that starts with Eve and one that starts with Adam. Samet calls this process “obtaining an iterated expectation”, and shows that, when the relevant state space is finite, there exists a common prior if and only if both of these sequences converge to the same limit.

He achieves this result by representing Adam’s beliefs by a type matrix M_1 and Eve’s beliefs by a type matrix M_2. These then form two permutation matrices, $M_{\sigma_1} = M_2 M_1$, which is intended to be used for the process of obtaining iterated expectations starting with Adam, and $M_{\sigma_2} = M_1 M_2$ which does the same for the iterated expectations starting with Eve. It then turns out to be the case that both M_{σ_1} and M_{σ_2} are ergodic Markov matrices, and therefore each of them has a unique invariant probability measure, which may be labelled respectively p_1 and p_2. It is then shown that if $p_1 \neq p_2$, Adam and Eve cannot share a common prior. On the other hand, if $p_1 = p_2$, then not only is there a common prior, it has positively been identified — it is precisely $p := p_1 = p_2$.

We can term the criterion by which a common prior is ascertained to exist, by the identities of the invariant probability measures associated with permutation matrices, the iterated expectations characterization. Samet (1998a), however, proves it only in the context of finite state spaces. Given the results in Feinberg (2000) and Heifetz (2006), which extend the No Betting characterization to compact state spaces, it is natural to wonder whether an analogue of Samet’s characterization can also be shown to hold in compact state spaces.

It is the goal of this paper to show that there is an affirmative answer to that question. The significance of such a result is clear, given that there are many models of interest which involve infinite state spaces and cannot be reduced to a finite space — we therefore extend the application of the iterated expectations characterization to many models to which it previously could not be applied.

It is also shown here, by way of an example, that compactness is necessary in the sense that if one does not assume compactness, the infinite dimensional analogue of the permutation matrix M_σ may not have a well-defined invariant probability measure — and without that, the subsequent propositions do not follow, and indeed in that case there is no guarantee that the iterated expectations characterization for checking the existence of a common prior can even be applied intelligibly, as there may not be invariant probability measures that can be compared against each other.

It should also be noted that the iterated expectations characterization is significant because it provides, in principle, a way of calculating a common prior given a type space. In the finite state space context, one can form the type matrices and apply numerical solutions for calculating invariant probability measures in Markov chains — a subject of active research — in order to ascertain whether or not there is a common prior and if one exists, to identify it. Similarly, with the extension here of the iterated expectations characterization to the more general compact spaces, it now becomes possible, given knowledge of the players’ type spaces, in principle to estimate the expected values of random variables by use of numerical solutions, such as those appearing in e.g. Hernández-Lerma and Lasserre (2003).

The following rough correspondences exist between results in this paper and those that appear in Samet (1998a), save for the fact that the results in that paper are strictly limited to finite state spaces, whereas that restriction is lifted here: Proposition 1 here is (roughly) an infinite state space version of Proposition 4 of Samet (1998a); Proposition 2 here corresponds to Proposition 5 of Samet (1998a); and similarly Proposition 3 corresponds to Proposition 2’ and Proposition 4 to Theorem 1’.

2. Preliminary definitions and results

2.1. Type spaces

A type space for a set of players is a tuple $(I, \Omega, \mathcal{F}, \varphi, (\Pi_i, t_i)_{i \in I})$. The set of players is denoted by $I = \{1, \ldots, n\}$, where $n \geq 2$. Ω is a measurable space of arbitrary cardinality, whose elements are called states. \mathcal{F} is a σ-field of events (subsets.

1 For the sake of simplicity here, we will make the mild technical assumption that the entire relevant state space is the meet of the Adam and Eve type space.
of \(\Omega \), and \(\psi \) a non-trivial \(\sigma \)-finite measure. For each player \(i \in I \), \(\Pi_i \) is a partition of \(\Omega \), which may be termed player \(i \)'s knowledge partition, and \(t_i(\cdot, \omega) \) denotes a belief — or probability measure on \((\Omega, \mathcal{F})\) — associated with each player \(i \) at each state. We further assume that each element of each partition \(\Pi_i \) is an element of \(\mathcal{F} \) (and therefore that the atoms of the knowledge partitions of each player are \(\mathcal{F} \)-measurable), and that \(\psi(\Pi_i) > 0 \). The collection \((\Pi_i)_{i \in I}\) is termed a partition profile, and will sometimes be denoted here by \(\Pi \).

The probability measures \(t_i(\cdot, \omega) \) for each player \(i \) and each state \(\omega \) are required to satisfy:

1. \(t_i(\Pi_i(\omega)|\omega) = 1 \).
2. For all \(\omega' \in \Pi_i(\omega) \), \(t_i(A, \omega') = t_i(A, \omega) \).

The meet of \(\Pi \), denoted \(\wedge \Pi \), is the partition of \(\Omega \) that is the finest among all partitions that are coarser than \(\Pi_i \) for each \(i \). For each \(\omega \), \(\wedge \Pi(\omega) \) denotes the element of the meet containing \(\omega \). A somewhat more constructive way to define the elements of the meet utilizes the concept of reachability. A state \(\omega' \) is reachable from \(\omega \) if there exists a sequence \(\omega_0 = \omega, \omega_1, \omega_2, \ldots, \omega_m = \omega' \) such that for each \(k \in \{0, 1, \ldots, m - 1\} \), there exists a player \(i_k \) such that \(\Pi_{i_k}(\omega_k) = \Pi_{i_k}(\omega_{k+1}) \).

It is well known that \(\omega' \in \wedge \Pi(\omega) \) if \(\omega' \) is reachable from \(\omega \), and therefore the relation of reachability can be used to define the meet. This characterization of the meet will be used in proofs in the body of this paper. For an event \(A \), the event that \(A \) is common knowledge is the union of all the elements of \(\wedge \Pi \) contained in \(A \).

A random variable is a real-valued function on \(\Omega \). For a probability measure \(\nu \) and a random variable \(f \) on \(\Omega \), the expectation of \(f \) with respect to \(\nu \) is \(\nu f := \int_{\Omega} f(\omega) d\nu(\omega) \). For each player \(i \) and random variable \(f \), \(i \)'s expectation of \(f \), denoted \(E_i f \) is the random variable

\[
(E_i f)(\omega) := \int_{\Omega} f(\omega) dt_i(\omega|\omega).
\]

Given a type space, one can ask whether the space might have come to exist, in its current state, from a space with no information at all, by the players acquiring new information over time and updating their beliefs in a Bayesian manner. Each player’s possible initial belief on the no-information primeval space is called a prior. In general, given player \(i \)'s current type, there will not be a single prior, but a set of possible priors. A main question is then whether or not the players have a common prior.

More formally, a probability measure \(\mu \) over \((\Omega, \mathcal{F})\) is a prior for player \(i \) if for every event \(A \in \mathcal{F} \),

\[
\mu(A) = \int_{\Omega} t_i(A|\omega) d\mu(\omega).
\]

A probability measure is a common prior if it is a prior for each of the players \(i \in I \).

2.2. Markov transitions

When working with a finite state space, a Markov chain is typically represented by a series of random variables \(\{X_1, X_2, \ldots\} \) along with a transition matrix \(M \), such that the \((i, j)\)-th element of \(M \) is the probability that \(X_{n+1} = j \) given that \(X_n = i \).

In transferring this idea to a more general state space, we cannot always expect to measure the probability that the value of a random variable in a successive time period will be a specific state, but we can ask what the probability is that it will be in an event. In formulae, if \((\Omega, \mathcal{F})\) is a measurable space, \((X, \mathcal{B}, \mathcal{P})\) a probability space, \(E \) an event in \(\mathcal{F} \), and \(\{\xi_1, \xi_2, \ldots\} \) is a sequence of \(\Theta \)-valued random variables defined on \(X \), our analogue of the transition matrix will be given by

\[
M(E|\omega) := \mathcal{P}(\xi_{n+1} \in E|\xi_n = \omega).
\]

This motivates the standard definition of a general Markov transition probability function:

A stochastic kernel or Markov transition probability function on \((\Omega, \mathcal{F})\) is a function \(M \) such that

1. \(M(\cdot|\omega) \) is a probability measure for each fixed \(\omega \in \Omega \).
2. \(M(E|\cdot) \) is an \(\mathcal{F} \)-measurable function on \(\Omega \) for each fixed event \(E \in \mathcal{F} \).

One of the most important aspects of finite state Markov transitions is the interpretation of the \(n \)-th power of a Markov transition matrix as representing the \(n \)-th step of iterating the transition probabilities encoded in the matrix. The analogue in general state spaces iterates a Markov transition probability function \(M \) by the following recursive definition:

\[
M^n(E|\omega) = \int_{\Omega} M^{n-1}(E|\omega') dM(\omega'|\omega) = \int_{\Omega} M(E|\omega') dM^{n-1}(\omega'|\omega)
\]

for all \(E \in \mathcal{F} \) and \(\omega \in \Omega \).

In the rest of this section, fix a Markov transition probability function \(M \).

Let \(\Delta(\Omega) \) denote the space of probability measures on \(\Omega \), with this space naturally outfitted with the induced weak* topology. It is possible to regard \(M \) as a function from \(\Delta(\Omega) \) to \(\Delta(\Omega) \), as follows: For each \(\nu \in \Delta(\Omega) \), let
\[
(\nu M)(E) := \int_{\Omega} M(E|\omega) \, d\nu(\omega).
\]

Then \(M \) acts on \(\Delta(\Omega) \) by way of \(\nu \mapsto \nu M \). Using this notation, a probability measure \(\nu \) is \textit{invariant} with respect to \(M \) if \(\nu = \nu M \). If such a measure exists, \(M \) is said to admit an invariant probability measure.

The transition probability function \(M \) can also be considered as operating on bounded functions in the following way. For each bounded integrable function \(f : \Omega \rightarrow \mathbb{R} \), let \(Mf \) be the bounded function

\[
Mf(\omega) := \int_{\Omega} f(\tilde{\omega}) \, dM(\tilde{\omega}|\omega).
\]

If \(\nu \) is an invariant probability measure with respect to \(M \), then \(M \) can also be considered to be a linear operator on \(L_1(\nu) := L_1(\Omega, \mathcal{F}, \nu) \). We can then define, for any \(k \) and \(f \in L_1(\nu) \)

\[
M^k f(\omega) := \int_{\Omega} f(\tilde{\omega}) \, dM^k(\tilde{\omega}|\omega).
\]

We have in addition the concept of the Cesàro mean, defined as

\[
M^{(n)} f(\omega) := \frac{1}{n} \sum_{k=0}^{n-1} M^k f(\omega).
\]

If \(\Omega \) has a topology \(\tau \), denote the class of bounded continuous functions with respect to \(\tau \) from \(\Omega \) to \(\mathbb{R} \) by \(C(\Omega) \). Then \(M \) satisfies the \textit{weak Feller property} if \(M \) maps \(C(\Omega) \) to \(C(\Omega) \).

Given the underlying space \((\Omega, \mathcal{F}, \varphi) \), a Markov transition function \(M \) is \(\varphi \)-irreducible if

\[
\sum_{n=1}^{\infty} M^n(E|\omega) > 0
\]

for all \(\omega \in \Omega \) whenever \(\varphi(E) > 0 \) for \(E \in \mathcal{F} \).

We will make use of the following important theorems from the theory of Markov chains. These three theorems appear in Hernández-Lerma and Lasserre (2003) respectively as Theorem 7.2.3, Proposition 4.2.2, and an amalgam of Theorem 2.3.4, Proposition 2.4.2 and Proposition 2.4.3:

THEOREM (Existence of invariant probability measure). Let \(\Omega \) be a compact metric space, and let \(M \) be a Markov transition function on \(\Omega \). Then \(M \) admits an invariant probability measure.

THEOREM (Uniqueness of invariant probability measure). Let \(M \) be a \(\varphi \)-irreducible Markov transition function and suppose that \(M \) admits an invariant probability measure \(\nu \). Then \(\nu \) is the unique invariant probability measure for \(M \).

THEOREM (Birkhoff’s Ergodic Theorem for Markov processes). Let \(M \) be a Markov transition function that admits an invariant probability measure \(\nu \). For every \(f \in L_1(\nu) \) there exists a function \(f^* \in L_1(\nu) \) such that

\[
P^{(n)} f \rightarrow f^* \nu \text{ almost everywhere}
\]

and

\[
\int f^* \, d\nu = \int f \, d\nu.
\]

In addition, if \(\nu \) is the unique invariant probability measure of \(M \), then \(f^* \) is constant \(\nu \)-almost everywhere, and \(f^* = \int f \, d\nu, \nu \)-almost everywhere, so

\[
\text{the time-average } \lim_{n \to \infty} M^{(n)} f = \text{the space-average } \int f \, d\nu, \nu \text{-a.e.}
\]

3. **Type spaces within the Markov framework**

3.1. **Relating type spaces to Markov processes**

In this section, we relate the concepts of type spaces and Markov processes (similarly to the way this is accomplished in Samet, 2000).

First, note that by definition, the probability measure \(t_i(\cdot|\cdot) \) associated with each player \(i \) satisfies the conditions for being a Markov transition probability function, hence we can relate to it as such. We will relabel \(t_i(\cdot|\cdot) \) as \(M_i \) in the sequel when we wish to emphasize we are treating it as a Markov transition.
In general, given any two probability measures P_1 and P_2, one can define a new probability measure $P_2 P_1(E|\omega)$ by

$$P_2 P_1(E|\omega) = \int_{\Omega} P_2(E|\omega) dP_1(\omega|\omega).$$

This obviously can be iterated any number of times. In particular, given a measure P, we can construct an infinite sequence of measures $\{P^n(\cdot|\omega)_{n\geq 1}\}$. In our specific context, given any two players i and j and a measurable event E, the probability measure $t_it_j(E|\omega)$ based on t_i and t_j is similarly defined by

$$t_it_j(E|\omega) = \int_{\Omega} t_i(E|\omega) dt_j(\omega|\omega).$$

In particular, given an element σ in Sym(I), the set of all permutations of the elements of I, define

$$t_\sigma := t_{\sigma(1)} \ldots t_{\sigma(n)}$$

iteratively, by using the above to define $t_{\sigma(n-1)}t_{\sigma(n)}$, then $t_{\sigma(n-2)}(t_{\sigma(n-1)}t_{\sigma(n)})$, and so on.

We can now re-interpret various notions relating to a type space within the Markov framework. First, note that for any function f on the state space, $M_i f$ is precisely the expectation of f in player i’s estimation (cf. Samet, 2000). This expectation is what is usually considered of economic significance and importance, as players choose their actions by comparing the relative expectations of functions.

Complementary to this, an invariant probability measure ν with respect to the Markov chain M_i is precisely a prior of player i. A common prior is a probability measure that is simultaneously invariant with respect to all $\{M_i\}_{i\in I}$.

A sequence $s = (i_1, i_2, \ldots)$ of elements of I is called an I-sequence if for each player j, $i_k = j$ for infinitely many ks.

The iterated expectation of a random variable f with respect to the I-sequence s is the sequence of random variables $\{M_{i_k}, \ldots, M_{i_1} f\}_{k=1}^{\infty}$.

Given the identification of $E_i f$ with $M_i f$, we can write, given a permutation σ of I,

$$M_\sigma := E_\sigma := t_{\sigma(1)} \ldots t_{\sigma(n)}$$

and term this a permutation chain.

The iterated expectation of f with respect to σ is the sequence $\{E^{(k)}_\sigma f\}_{k=1}^{\infty}$ and the Cesàro iterated expectation of f with respect to σ is $\{E^{(k)}_\sigma f\}_{k=1}^{\infty}$. The iterated expectation of f with respect to σ is the iterated expectation of f with respect to the I-sequence $\sigma_1, \ldots, \sigma_n, \sigma_1, \ldots, \sigma_n, \ldots$

as defined above.

It should be noted here that the results in this paper do not extend all the results of Samet (1998a) to compact metric spaces. To be precise, the claims of that paper, in the finite type space context, show that the existence of a common prior implies that for each random variable f, $\int_{\Omega} E_i f d\nu_i$ is convergent to the same limit. The claims of this paper show that, in the context of a compact e.m.p. type space (as defined in the next section), the existence of a common prior implies that for each random variable f it is common knowledge in each state that all the iterated expectations of f, with respect to all I-sequences s, converge to the same limit. The claims of this paper show that, in the context of a compact e.m.p. type space (as defined in the next section), the existence of a common prior implies that for each random variable f it is common knowledge in each state that the Cesàro iterated expectations of f with respect to each permutation converge to the same limit, but not with respect to all I-sequences.

3.2. Everywhere mutually positive type space

A type space $\langle I, \Omega, \mathcal{F}, \varphi, (\Pi_i, t_i)_{i\in I} \rangle$ with a topology τ over Ω will be termed everywhere mutually positive (e.m.p.) if it satisfies the conditions:

1. For each state $\omega \in \Omega$, there exists an event $A(\omega) \ni \omega$ such that $A(\omega) \subseteq \cap_i \Pi_i(\omega)$, and $\varphi(A(\omega)) > 0$.
2. For all $i \in I$, each state $\omega \in \Omega$, and every event $A \ni \omega$ such that $\varphi(A) > 0$, the inequality $t_i(A|\omega) > 0$ is satisfied.
3. The correspondence $\omega \mapsto t_i(\cdot|\omega)$ is continuous with respect to the topology τ and the weak topology on $\Delta(\Omega)$, for every $i \in I$.

The intuitive reason for working with everywhere mutually positive spaces is that we wish to relate together the main elements with which we are working, namely the paritional structure, the type probabilities, the topology, and the underlying measure on the space. Consider, for example, three states $\omega_1, \omega_2, \omega_3$, that are reachable one from the other by way of $\omega_1, \omega_2 \in \Pi_i(\omega_1)$ and $\omega_2, \omega_3 \in \Pi_j(\omega_2)$, for players $i \neq j$. As these states are connected from the perspective of the paritional structure, we want them to be “connected” also in the sense of Markov transitions, that is, intuitively speaking, we want there to be a positive probability of transitioning to ω_3 from ω_1. This means avoiding situations in which, e.g.,
there is non-zero probability of transitioning from ω_2 to ω_3 according to t_j, but the transition from ω_1 “gets stuck” because t_i assigns zero probability to transitioning from ω_1 to ω_2, or because the underlying measure φ assigns zero probability to every event in $\Pi_i(\omega_2) \cap \Pi_j(\omega_2)$. The first two properties in the definition of an e.m.p. are therefore intended to avoid such difficulties. The third property relates the topology τ and the type spaces in a standard continuity requirement.

Note that when Ω is finite and Π is positive, meaning that $t_i(\omega) > 0$ for all i and all ω, the corresponding type space, using the standard counting measure, trivially satisfies the conditions of being everywhere mutually positive. Also note that from previous definitions it follows that

$$\int f(\tilde{\omega}) \, dt_i(\tilde{\omega}|\omega)$$

is always continuous in ω for every $f \in C(\Omega)$.

If in addition to the above conditions, (Ω, τ) is compact metric space, the type space $(I, \Omega, \varphi, \tau, (\Pi_i, t_i))_{i \in I}$ will be called a compact e.m.p. space for short. Nearly all the results in this paper will henceforth assume a compact e.m.p. type space. For notational ease, $(I, \Omega, \varphi, \tau, (\Pi_i, t_i))_{i \in I}$ will be written simply as (Ω, τ).

4. Common priors and compact e.m.p. type spaces

Given any $Q \in \Pi$, the restriction of M_t to Q, for any player i, will be written as M_t^Q. Given a permutation σ in $\text{Sym}(I)$, the restriction of M_{σ} to Q is similarly denoted by M_{σ}^Q.

Lemma 1. Given a type space satisfying properties (1) and (2) of e.m.p. type spaces, for any permutation σ of I and player i, and for any arbitrary pair of states $\omega, \tilde{\omega} \in \Pi_{\sigma(i)}(\omega)$, there is a φ-non-null event $A(\omega)$ such that $t_j(A(\omega)|\tilde{\omega}) > 0$.

Proof. Let $\omega, \tilde{\omega} \in \Pi_{\sigma(i)}(\omega)$. By property (1) of e.m.p. type spaces, there exist φ-non-null events $A(\omega) \ni \omega$ and $A(\tilde{\omega}) \ni \tilde{\omega}$ such that $A(\omega) \cap \Pi_j(\omega)$ and $A(\tilde{\omega}) \subseteq \Pi_j(\tilde{\omega})$. Let $i < j \leq n$; by property (2), $t_{\sigma(j)}(A(\tilde{\omega})|\tilde{\omega}) > 0$, and similarly, for any $1 \leq k < i$, we have $t_{\sigma(k)}(A(\omega)|\omega) > 0$ for $1 \leq k < i$. From $t_{\sigma(i)}(A(\tilde{\omega})|\tilde{\omega}) > 0$ and $t_{\sigma(i)}(A(\omega)|\omega) = t_{\sigma(i)}(A(\tilde{\omega})|\tilde{\omega})$ (which holds since $\omega, \tilde{\omega} \in \Pi_{\sigma(i)}(\omega)$), it follows that $t_{\sigma(i)}(A(\omega)|\tilde{\omega}) > 0$.

We now unravel the recursive definition of $t_{\sigma(1)} \ldots t_{\sigma(n)}(\omega|\omega)$. For $i < j \leq n$, suppose that $t_{\sigma(j)}(t_{\sigma(1)} \ldots t_{\sigma(n)}(\omega|\omega)) > 0$ (which is certainly true when $j = n$). Then

$$t_{\sigma(j-1)} t_{\sigma(j)} \ldots t_{\sigma(n)}(\omega|\omega) = \int_{\Omega} t_{\sigma(j-1)}(A(\omega)|\omega') \, dt_{\sigma(j)}(\omega|\omega') \, dt_{\sigma(n)}(\omega|\omega')$$

But the facts that $t_{\sigma(j)}(t_{\sigma(1)} \ldots t_{\sigma(n)}(\omega|\omega)) > 0$, that $A(\tilde{\omega}) \subseteq \Pi_{\sigma(j)}(\tilde{\omega})$, and that $t_{\sigma(j)}(A(\omega)|\omega') = t_{\sigma(j-1)}(A(\tilde{\omega})|\tilde{\omega}) > 0$ for all $\omega' \in \Pi_{\sigma(j)}(\tilde{\omega})$, taken all together, imply that $t_{\sigma(j-1)}(t_{\sigma(1)} \ldots t_{\sigma(n)}(\omega|\omega)) > 0$.

Similar reasoning can be applied at the transition point from $t_{\sigma(i+1)}(t_{\sigma(i+2)} \ldots t_{\sigma(n)}(\omega|\omega))$ to $t_{\sigma(i+1)}(t_{\sigma(i+2)} \ldots t_{\sigma(n)}(\omega|\omega))$, and the transition point from $t_{\sigma(k)}(t_{\sigma(k+1)} \ldots t_{\sigma(n)}(\omega|\omega))$ to $t_{\sigma(k-1)}(t_{\sigma(k+1)} \ldots t_{\sigma(n)}(\omega|\omega))$ for $1 \leq k < i$, to conclude that $t_{\sigma}(A(\omega)|\tilde{\omega}) > 0$. \hfill □

Proposition 1. For any permutation σ of I, and for any element Q of the meet of a compact e.m.p. type space (Ω, τ), M_{σ}^Q has a unique invariant probability measure π_{σ}^Q.

Proof. By the assumed properties of an e.m.p. type space, $M_{\sigma(i)}^Q$, for any i, satisfies the weak Feller property. The weak Feller property of $M_{\sigma(i)}^Q$ follows readily from the concatenation formation via $M_{\sigma(i+1)}^Q \ldots M_{\sigma(n)}^Q$. The compactness of the metric topology τ then guarantees the existence of at least one invariant probability measure π_{σ}^Q over $M_{\sigma(i)}^Q$ by application of a theorem cited in Section 2.2.

Next, select an event $E \subseteq Q$ such that $\varphi(E) > 0$, and a state $\omega' \in E$. Let $\omega \in Q$ be selected arbitrarily. Since $\omega \in \bigwedge \Pi(\omega')$, there exists a sequence $\{\omega = \omega_0, \omega_1, \omega_2, \ldots, \omega_m = \omega'\}$ such that for each $k \in [0, 1, \ldots, m-1]$, there exists a player i_k such that $\Pi_{i_k}(\omega_k) = \Pi_{i_k}(\omega_{k+1})$.

We can now define the following iterative process: by definition, there is a player i_0 such that $\Pi_{i_0}(\omega_0) = \Pi_{i_0}(\omega_1)$. At step 0 of the iterative process, we conclude from Lemma 1 the existence of a φ-non-null event $A(\omega_1)$ such that $t_{\sigma}(A(\omega_1)|\omega_0) > 0$.

At step $j > 0$, there is a player i_j such that $\Pi_{i_j}(\omega_j) = \Pi_{i_j}(\omega_{j+1})$. Applying the same reasoning as above, there is a φ-non-null event $A(\omega_{j+1}) \subseteq \Pi_{i_j}(\omega_{j+1}) \cap \Pi_{i_{j+1}}(\omega_{j+1})$ such that $t_{\sigma}(A(\omega_{j+1})|\omega_j) > 0$, and furthermore by concatenating the results of steps previous to step j, $t_{\sigma}^{j+1}(A(\omega_{m+1})|\omega_0) > 0$.

At the end of the process, the conclusion is $t_{\sigma}^m(A(\omega_m)|\omega_0) > 0$, with $\omega_m \in A(\omega_0) \subseteq \Pi_{m-1}(\omega_m)$. Finally, from $\varphi(E) > 0$ and the assumption that the type space is an e.m.p. space, we have $t_{\sigma}^m(E|\omega_0) = \omega_m > 0$ for all $k \in E$. By a slight tweaking of the proof of Lemma 1, using the fact that $\omega' \in A(\omega') \cap E$ and that for all k, $t_{\sigma}(A(\omega')|\omega'_0) > 0$, we can show that $t_{\sigma}(E|\omega') > 0$ and then that $t_{\sigma}^{m+1}(E|\omega_0) > 0$. We thus conclude that M_{σ}^Q is φ-irreducible, hence π_{σ}^Q is unique. \hfill □
Proposition 2. For a compact e.m.p. type space \(\Omega \), the following are equivalent.

1. \(\pi \) is a common prior on \(\Omega \).
2. \(\pi \) is an invariant probability measure of \(M_i \) for each \(i \in I \).
3. \(\pi \) is an invariant probability measure of \(M_\sigma \) for every permutation \(\sigma \).

Proof. This is the compact-space equivalent result to Proposition 5 of Samet (1998a), and the proof is nearly identical. Almost immediately from the definitions, 1) and 2) are equivalent. That 2) implies 3) is quite readily seen: if \(\pi t_1 = \pi \) for each player, then one can successively calculate \(\pi (t_\sigma(1) \ldots t_\sigma(n)) = \pi (t_\sigma(2) \ldots t_\sigma(n)) = \cdots = \pi (t_\sigma(\infty)) = \pi \), for any permutation \(\sigma \).

It remains to show that 3) implies 2). Suppose 3), and let \(\pi \) be the invariant probability measure. Thus
\[
\pi (t_1 t_2 \ldots t_n) = \pi.
\]

Multiplying from the right by \(t_1 \) gives
\[
\pi (t_1 t_2 \ldots t_n t_1) = \pi t_1.
\]

So \(\pi t_1 \) is an invariant probability measure of \(t_2 \ldots t_n t_1 \). But by 3), \(\pi \) is an invariant probability measure of \(M_2 M_n \ldots M_1 \), and by the previous proposition, \(M_2 M_n \ldots M_1 \) has a unique invariant probability measure. Thus, \(\pi M_1 = \pi \), and by entirely similar arguments \(\pi M_i = \pi \) for all \(i \).

Corollary 1. For every \(Q \in \land I \), there exists at most one common prior on \(Q \).

5. Permutations, iterated expectations and common priors

5.1. Main results

Proposition 3. Given a compact e.m.p. type space \(\Omega \), for each random variable \(f \) on \(\Omega \) and permutation \(\sigma \), \(\lim_{n \to \infty} E^{(n)}_{\sigma} f \) exists, and on each element \(Q \) in \(\land \Pi \) it is constant and is equal to \(\pi^Q f \), \(\pi^Q \) \(-a.e. \) everywhere.

Proof. This follows from the previous propositions and Birkhoff's Ergodic Theorem, cited in Section 2.2.

Proposition 4. Given a compact e.m.p. type space \(\Omega \) satisfying \(\land \Pi = \{ \Omega \} \), a common prior \(\pi \) exists iff for each random variable \(f \), the elements of
\[
\left\{ \lim_{n \to \infty} E^{(n)}_{\sigma} f \mid \sigma \in \text{Sym}(1) \right\}
\]

converge \(\pi_{\sigma} \) \(-a.e. \) everywhere to the same limit. Moreover, if \(\pi \) is the common prior, then this limit is \(\pi f \), \(\pi \) \(-a.e. \) everywhere.

Proof. As above, \(\lim_{n \to \infty} E^{(n)}_{\sigma} f \) is constantly \(\pi_{\sigma} f \), \(\pi_{\sigma} \) \(-a.e. \) everywhere, where \(\pi_{\sigma} \) is the unique invariant probability measure of \(M_{\sigma} \) on \(\Omega \). Thus, for each \(f \), the limits for all \(\sigma \) are respectively \(\pi_{\sigma} \) \(-a.e. \) equal to each other iff for each \(f \), \(\pi_{\sigma} f \) are \(\pi_{\sigma} \) \(-a.e. \) constantly equal to the same value for all \(\sigma \).

Clearly, if there is a probability measure \(\pi \) such that \(\pi_{\sigma} = \pi \) for all \(\sigma \), then the \(\pi_{\sigma} f \) are all equal to each other. In the other direction, if in particular for each \(A \in \mathcal{F} \), the \(\pi_{\sigma} \chi_A \) are all equal, then there is a probability measure \(\pi \) such that \(\pi_{\sigma} = \pi \) for all \(\sigma \). This amounts, given previous propositions, to saying that \(\pi \) is a common prior.

We can summarize these results as follows:

Main Theorem. Given a compact e.m.p. type space whose meet is a single element, for each random variable \(f \) and permutation \(\sigma \) of the players, the Cesàro iterated expectation of \(f \) with respect to \(\sigma \) converges, and the value of its limit is common knowledge. Moreover, there exists a common prior if and only if for each random variable \(f \) it is common knowledge that all its Cesàro iterated expectations with respect to all permutations converge to the same value.

5.2. On the use of Cesàro means

In Samet (1998a), in the finite state space case, results are stated in terms of iterated expectations, i.e. \(\lim_{n \to \infty} E^{(n)} f \), whereas the results here work with Cesàro limits, i.e. \(\lim_{n \to \infty} E^{(n)}_{\sigma} f \). It may be natural to inquire what is gained and/or lost in this distinction.

At the intuitive level, returning to the story of Eve and Adam in Samet (1998a), we again have the iterated operations of Eve computing the expectation of Adam's expectation of Eve's expectation ... and so on. But now the sequences we...
concentrate on, \(E^n_\sigma f \), are the running averages of these iterated expectations, rather than the expectations themselves, and the question is whether or not these averages converge to the same value.

From one perspective, Proposition 4 can be regarded as pointing to a “test” for establishing whether a common prior exists — in words, check if \(\lim_{n \to \infty} E^n_\sigma f \) converges a.e. to the same value for each \(\sigma \in \text{Sym}(I) \) and each random variable \(f \). But because the operation of taking Cesàro means preserves convergent sequences and their limits — i.e. if \(\lim_{n \to \infty} E^n_\sigma f = a \) then certainly \(\lim_{n \to \infty} E^n_\sigma f = a \) — in one direction it suffices to replace the Cesàro iterated expectation \(\lim_{n \to \infty} E^n_\sigma f \) with the simple iterated expectation \(\lim_{n \to \infty} E^n_\sigma f \), and from this point of view we have an “exact” extension of the finite Samet result. However, if one has identified a random variable \(f \) and \(\sigma \in \text{Sym}(I) \) such that \(\lim_{n \to \infty} E^n_\sigma f \) diverges, that is not sufficient to conclude, in the infinite state space case, that there is no common prior, because in that case one needs to check in addition whether \(\lim_{n \to \infty} E^n_\sigma f \) also diverges.

Similarly, Proposition 4 asserts that if there is a common prior, then for each random variable \(f \) and each \(\sigma \in \text{Sym}(I) \), \(\lim_{n \to \infty} E^n_\sigma f \) converges a.e. to the same value — but from this it cannot be concluded that the same can be said of the iterated expectation \(\lim_{n \to \infty} E^n_\sigma f \), because it is possible for the latter to diverge when the Cesàro sums converge.

Nevertheless, this result may still be useful for certain applications. To take one example, consider the model of utilitarian preference aggregation under incomplete information presented in Nehring (2004), in which social preferences amongst a set of agents \(I \) is calculated as \(E_\mu \left(\sum_{i \in I} U^f_i \right) \), where the random variable \(U^f_i \) is agent \(i \)'s utility derived from “social act” \(f \) (represented as a random variable over a finite set of states \(\Omega \)) and \(E_\mu \) denotes the expectation with respect to a common prior \(\mu \). Without going into details here, the key point of the model in that paper of interest here is a result that asserts that act \(f \) is “socially preferred” to \(g \), written \(f \succ g \), if and only if \(E_\mu \left(\sum_{i \in I} U^f_i \right) > E_\mu \left(\sum_{i \in I} U^g_i \right) \), where the common prior \(\mu \) is assumed to exist. The common prior therefore plays the role of a “group” valuation. Nehring (2004) seeks to characterize this group valuation in terms of the beliefs of the individual agents, and appeals to Samet’s result to do so.

With the results of this paper, extending Nehring’s model to an infinite compact e.m.p. type space \(\Omega \) with a common prior \(\mu \), it can be shown that the group valuation may be related to the (potentially finite iterations of) beliefs of individual agents. In Nehring (2004), \(f \succ g \) if and only if for some finite sequence \(\{i_1, \ldots, i_k\} \), it is common knowledge that \(E_{i_k \ldots i_1} \left(\sum_{i \in I} U^f_i \right) > E_{i_k \ldots i_1} \left(\sum_{i \in I} U^g_i \right) \). Using the Cesàro mean approach in the infinite compact case, we can recapitulate this result in the “if” direction. In place of Nehring’s supposition of common knowledge that \(E_{i_k \ldots i_1} \left(\sum_{i \in I} U^f_i \right) > E_{i_k \ldots i_1} \left(\sum_{i \in I} U^g_i \right) \) for some finite sequence, suppose (in the infinite compact e.m.p. case) that for some finite \(k \) and permutation \(\sigma \in \text{Sym}(I) \), there is common knowledge amongst the agents in \(I \) that \(E^\sigma_\mu \left(\sum_{i \in I} U^f_i \right) > E^\sigma_\mu \left(\sum_{i \in I} U^g_i \right) + \varepsilon \), where \(\varepsilon > 0 \) is arbitrary. This last inequality may be rephrased as

\[
E^\sigma_\mu \left(\sum_{i \in I} U^f_i - \sum_{i \in I} U^g_i \right)(\omega) > \varepsilon.
\]

It then follows from the definitions that there is common knowledge amongst the agents that \(E^\sigma_\mu \left(\sum_{i \in I} U^f_i - \sum_{i \in I} U^g_i \right) > \varepsilon \) for all integers \(n > k \). But from this it readily follows that

\[
\lim_{n \to \infty} E^{(n)}_\sigma \left(\sum_{i \in I} U^f_i \right) > \lim_{n \to \infty} E^{(n)}_\sigma \left(\sum_{i \in I} U^g_i \right) + \varepsilon,
\]

or

\[
E_\mu \left(\sum_{i \in I} U^f_i \right) > E_\mu \left(\sum_{i \in I} U^g_i \right) + \varepsilon,
\]

since by Proposition 4 and the assumption of the existence of a common prior \(\mu \), \(E_\mu \left(\sum_{i \in I} U^f_i \right) \) is given by \(\lim_{n \to \infty} E^{(n)}_\sigma \left(\sum_{i \in I} U^f_i \right) \) for each permutation \(\sigma \). We can then conclude that \(f \succ g \).

6. The necessity of compactness

In this section we demonstrate that the conclusion of Proposition 1 above, namely that each \(M_\sigma \) has an invariant probability measure, does not hold when the assumption of compactness is relaxed. As the proofs of the propositions subsequent to Proposition 1 are ultimately dependent on the conclusion of Proposition 1, they cannot be conducted without compactness.

The example we use here is a variant of the famous “electronic mail” games. Consider two individuals, Anna and Ben, and a denumerable state space \(\Omega = \{1, 2, 3, \ldots\} \). Anna’s partition is \(\{\{1\}, \{2, 3\}, \{4, 5\}, \ldots\} \) and Ben’s partition is \(\{\{1, 2\}, \{3, 4\}, \{5, 6\}, \ldots\} \). The meet is \(\{2\} \). Ben’s beliefs are always equal probabilities to the two states in each of his partition members. Anna’s beliefs are also equal probabilities to the two states in her partition members, save for the probability 1 which is necessary for the single partition containing one state.

We can depict the beliefs of each of the two players in the form of infinite matrices:
of invariant probability, it must also be the case that

\[\pi(\sigma) = \pi(2) = \alpha, \]

and note that it forms the following pattern: letting \(O \) stand for the set of positive odd integers, and regarding \(M_\sigma \) as a mapping on the domain \(\mathbb{N} \times \mathbb{N} \), we start with \(M_\sigma(1,1) = \frac{1}{2} \), \(M_\sigma(2,1) = \frac{1}{2} \), and for each \(j \in O \), \(\frac{1}{4} = M_\sigma(j, j+1) = M_\sigma(j+1, j+1) = M_\sigma(j+2, j+1) = M_\sigma(j, j+2) = M_\sigma(j+1, j+2) = M_\sigma(j+2, j+2) = M_\sigma(j+3, j+2) \). For all other values of \(k \) and \(l \), \(M_\sigma(k,l) = 0 \).

Suppose now that there is an invariant probability measure \(\pi \) with respect to \(M_\sigma \). Let \(\pi(1) = \alpha \). Then by the definition of invariant probability, it must also be the case that \(\pi(2) = \alpha \), because \(\pi(1) = \frac{1}{2}(\pi(1) + \pi(2)) \). Similar reasoning leads to the conclusion that \(\pi(3) = \alpha, \pi(4) = \alpha, \ldots \), \(\pi(k) = \alpha, \ldots \)

Now, \(\alpha \in [0,1] \), so either \(\sum_{k=1}^{\infty} \pi(k) = 0 \), or \(\sum_{k=1}^{\infty} \pi(k) = \infty \). In either case, \(\pi \) cannot be a normalized probability.

7. Conclusion

As stated in the introduction, in this paper we have extended most of the results of Samet (1998a) to compact e.m.p. type spaces and shown that compactness is necessary for the proofs of the results. As noted in Section 3, whether our results on compact e.m.p. type spaces also apply with respect to all \(I \)-sequences remains an open question.

References

Heifetz, A., 2006. The positive foundation of the common prior assumption. Games Econ. Behav. 56 (1), 105–120.

