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Instrumental variables are intended to correct for misspecifications largely stemming
from endogeneity problems or omission of relevant important covariates correlated with
some of the other included covariates. The validity of the IV estimator relies on the or-
thogonality with respect to the random disturbance. However, in cases of endogenously
truncated data as well as in other instances (e.g, censored data) which is very frequently
the nature of data used in empirical research, there exists severe contamination in the
disturbance due to the endogenous selection process. The endogenous selection process
generates a co-movement between the IV and the disturbance which is related to the
variation in the selection equation’s covariates. This contamination propagates additional
bias introduced into the parameter estimates of the various covariates. Consequently, not
only that the conventional IV does not solve the problem it is intended to but rather
introduces additional bias into the parameter estimates of the various covariates of the
substantive equation. Our empirical implementation shows that even under mild correla-
tion between the random disturbances, the resulting bias in the estimated parameter of
the endogenous covariate in the substantive equation can amount to almost 10 times the
true parameter value for 500 observations and can amount to 5 times the true parameter
value in a sample of 10,000 observations. We offer a semi-parametric Fourier-dependent
Sieve IV (SPIV ) estimator correcting for both truncation as well as endogeneity biases.
The proposed estimator removes the hurdle which prevents orthogonality under trunca-
tion or other misspecifications. Using Monte Carlo simulations attest to the high accuracy
of our offered semi-parametric Sieve IV estimator as expressed by the

√
n consistency.

These results have been verified by utilizing 2,000,000 different distribution functions,
practically generating 100 millions realizations to generate the various data sets.
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1. Introduction

It is quiet common that researchers in almost any field of research do not have information

regarding the entire data distribution function, a phenomenon referred to as truncation. As

such, the truncated data set is most likely of different characteristics than the non-truncated

full distribution, leading potentially to biased estimates which challenge the causal inter-

pretation of the covariates in the model on the dependent variable. The problem is further

aggravated when this truncation is actually non-random and rather endogenously propagated

by various decision units (observations) since it implies the joint dependence of the random

disturbance and the covariates in the truncated environment.

Social scientists however, are typically interested in capturing behavioral relationships ex-

pressed by casual links between variables (the dependent variable and each of the covariates),

rather than merely by their correlations. In order to make causal inferences,1 they utilize mod-

els which often involve instrumental variables (IV ) (Angrist et al., 1996).2 The purpose of

employing IV is to guarantee a covariate exhibits a causal relationship with the dependent

variable as well as solving problems arising from various misspecification.

Endogenous covariates cannot represent causal relationships since some of the variation in

the dependent variable of interest stems from a common variation in both the endogenous

covariate as well the random disturbance which is not easily decomposable. Application of a

proper instrumental variable generates variation in the endogenous covariate without intro-

ducing variation in the random disturbance and hence orthogonal to it. Thus, IV contributes

to exogeneity and therefore has been extremely popular in empirical work. Note that IV

can provide a strategy that can be used to deal with the problem of omitted-variables bias

in a wide range of single-equation regression applications, such as models with mismeasured

regressors (Durbin, 1954) and the estimation of treatment effects (Angrist and Imbens, 1995;

Heckman and Hotz, 1989; Heckman and Robb, 1985).3

The primary purpose of the present paper is to show that a valid IV cannot perform its

intended task in a truncated environment, because it may not be orthogonal to the random

1For a specific form of causality due to treatment effect see Angrist and Kuersteiner (2004)’s definition.
2These are variables that are excluded from some equations and included in others, and therefore are

correlated with some outcomes only through their effect on other variables (Angrist et al., 1996).
3See Angrist and Imbens (1995) for a very elaborate discussion of IV use in the literature.
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disturbance in such an environment.4 Once we have analytically proven that the IV estimator

is no longer valid in a truncated environment, we introduce a correction procedure, referred

to here as semi-parametric Fourier-dependent Sieve IV estimator (SPIV ) which corrects for

both sources of bias: the endogeneity of covariates as well as the endogenous self-selection

biases.

Utilizing a semi-parametric estimation procedure such as Sieve or kernel estimators allows

us to obtain a distribution free estimator, without having to specify a joint distribution func-

tion for the random disturbances in the model. Such an estimator is more general and robust

than its parametric counterpart, since it is less dependent on the data generation process.

This is important due to the fact that the parametric distributional assumptions are rarely

satisfied in practice. However, kernel estimators involve computational burden due to the

necessity to find the optimal bandwidth (Ichimura, 1993) and the fact that choosing the

wrong bandwidth might leads to bias estimates (Lewbel and Linton, 2007). Unlike kernel

estimators, Sieve estimators are based on a combination of basis functions and are global

estimators in the sense that the entire function is characterized by a finite set of parameters,

such as trigonometric functions (Fourier) and Hermit polynomials. Sieve estimators, being

independent of bandwidth,5 are attractive alternatives to the kernel estimators. Among the

various Sieve estimators is the Fourier series, a functional of the Orthonormal polynomials

sequence family, which allows for efficient estimation of functions with non-smoothness, dis-

continuities in derivatives, sharp spikes and discontinuities in the function itself. Thus, it

is useful in non-parametric regression for approximating a much broader class of functions

(Ogden, 2012) than the kernel approach. The major insight of our approach is the realization

that generally in a truncated environment there exists co-movement between the instrumen-

tal variable and the substantive equation’s random disturbance, while this does not exist in

the non-truncated environment. This co-movement is propagated by the endogenous selec-

tion equation’s covariates. In this context our offered estimator is a generic IV as it removes

the contamination propagated by any co-movement of instrumental variable and the random

disturbance generated by truncation or censoring. In our particular specific treatment the

4Note that we deal with endogenously truncated sample selection model to differentiate from censored sample
selection models (Heckman, 1979; Newey, 2009; Powell, 2001) where there exists information pertaining to the
non-participants.

5Kernel estimators are bandwidth dependent, for example.
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co-movement stems from the endogenous selection process which determines truncation.

Instrumental variables are routinely employed in various semi-parametric models as well

as non-parametric models using methods which are generalization of the parametric non-

linear instrumental variables.6 These models can be either partially linear (Florens et al.,

2012; Robinson, 1988), including the partially linear single index models as a special case

using fitted values obtained from the first stage regression (Zhou et al., 2016),7 or completely

non-linear (e.g, Chen et al. (2014); Newey (2013); Newey and Powell (2003).) using control

function approach8 with additivity (Newey et al., 1999) or without additivity (Imbens and

Newey, 2009). A quite common method is the conditional moment method which has been

introduced by Ai and Chen (2003); Chen and Pouzo (2009) and can be applied also in

GMM estimation (Chen and Liao, 2015).9,10 Additional implementation of IV is present

in endogenous sample selection models allowing for a causal interpretation in the presence

of endogenous covariates. The identification strategy in these models relies on either the

conditional independence of the IV and the selection variable (which is not truncated, and

thus is fully observed) given the dependent variable of interest (d’Haultfoeuille, 2010) or the

population (non-truncated) distribution function of at least one of the selection equation’s

covariates (Lewbel, 2007).

However, neither the availability of an auxiliary data set from the entire population nor

the conditional independence assumption (which limits the availability of valid instrumental

variables) is required in the present article, as the instrumental variable and the selection

variable are modeled as conditionally dependent (through variation in the selection equation’s

covariates) given the substantive equation’s dependent variable. Consequently, our present

model facilitates finding (and implementing) a valid IV as it is subjected to fewer restrictions

such as joint independence.

The key difference between censored and truncated sample selection models with endoge-

6The parametric non-linear instrumental variables approach includes the non-linear two stage least squares
(NLLS) (Amemiya, 1974), the generalized IV (GIV E) (Sargan, 1958) and the generalized method of moments
(GMM) (Hansen, 1982). For the linear version see Angrist and Imbens (1995).

7See Liang et al. (2010) for a detail discussion about the partially linear index model estimation.
8The control function approach includes the residual obtained from the first stage regression as an additional

covariate in the substantive equation to control for the omitted variables which generates the endogeneity.
9See Blundell and Powell (2003) for a further discussion on the various IV methods in semi-parametric and

non-parametric models.
10Other approach is appropriate only for an invertible index-model (Ahn et al., 2015; Das et al., 2003).
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nous self-selection is that in the former, only the dependent variable of interest is truncated,

while in the later the entire data set is truncated, including the endogenous covariate being

estimated in the first stage regression. Consequently, the substantive equation is not the only

equation affected by the endogenous truncation. In fact, the first stage equation is affected as

well due to a contamination in its random disturbance with the selection equation’s covari-

ates (as depicted graphically in figure 1). In other words, there is a co-movement between its

residual and its covariates which is related to a variation in the selection equation’s covariates

generating endogeneity in the first stage regression’s covariates.

In the present article, we are particularly interested in causal interpretation of covariates

which jointly co-move with the random disturbance under endogenously truncated data dis-

tribution function. In such a model, there are two sources of bias: (i) an endogenous truncation

bias and (ii) bias generated by endogenous covariates in the substantive equation. The former

bias is due to the joint dependence of the random disturbances in the substantive and selec-

tion equations (Heckman, 1979).11 Decomposing the random disturbance in the substantive

equation we uncover these sources of bias and show analytically that the conventional IV

fails to provide causal interpretation of the endogenous covariates under endogenously trun-

cated environment. To alleviate this, we offer a semiparametric Fourier dependent Sieve IV

estimator enabling the correction of these two biases.

We run Monte Carlo simulations to measure the magnitude of the potential bias in the

parameters’ estimates under endogenous truncation obtained by employing a conventional IV

to eliminate the endogeneity bias. Our empirical implementation shows that even under mild

correlation between the random disturbances, the resulting bias in the estimated parameter

of the endogenous covariate in the substantive equation can amount to almost 10 times the

true parameter value for 500 observations and can amount to 5 times the true parameter

value in a sample of 10,000 observations.

2. Motivation

IV estimators are routinely employed to resolve bias introduced by endogenous covariates

due to the joint dependence of the covariates and the random disturbance. In the conventional

11Such a dependence generates a misspecification in the participants’ substantive equation, leading to po-
tential bias in its parameters’ estimates (Heckman, 1979).
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IV implementation the covariates endogeneity is intrinsic in the model (population regres-

sion), in the sense that the cause for this joint dependence is unrelated to sample selection.

However, in many cases this joint dependence is generated partially (or entirely) by sample

selection generating an endogenously truncated data set which entails endogeneity bias of its

own. Consequently, the parameters estimates will be biased and inconsistent due to not only

the covariates’ endogeneity problem, but also due to the endogenous self-selection, and the

interaction of these. Thus, it is the contention of this paper that under conditions of data

truncation, the IV estimator does not remove the problem for which it was designed to solve

and introduces additional bias. Our primary argument is that in truncated environment the

IV is no longer orthogonal to the regression equation’s disturbance due to a co-movement

between the IV and the selection equation’s covariate(s). It is well known (Ichimura and Lee

(1991)) that the substantive equation’s distribution function of the disturbance is a condi-

tional distribution given the selection equation’s covariates. Simply put, generally there exists

a co-movement between the disturbance (of the substantive equation) and the IV , related

to the variation in the selection equation’s covariate(s). The approach we adapt is to dis-

cover the reason for this co-movement and neutralizing it, thereby persevering the necessary

orthogonality conditions for the IV . To that end, we develop a semi-parametric IV (SPIV)

estimator that corrects for both truncation bias as well as endogeneity bias. The proposed

estimator removes the hurdle which prevents orthogonality under truncation. In what follows

we formally represent our argument.

Let w be a random variable vector, and let x, z and ξ be jointly dependent random variables,

such that z and ξ are conditionally independent given w.12 Denote a random variable y which

is constructed as a linear function of x and the random disturbance ξ.

Then, by construction, the co-movement between z and ξ is entirely generated by a variation

in w. These five variables (x, z,w, y, ξ) are interrelated as depicted in figure 1. Only in panel

(a) w doesn’t play any role. In panel (c) we assume that x and ξ are both conditionally as

well as unconditionally dependent given w (implying the endogeneity of x is only partially

related to w), unlike panel (b) in which x and ξ are conditionally independent given w

although they are unconditionally dependent given this w (implying the endogeneity of x is

12By holding w constant, z and ξ are not jointly dependent rather, z and ξ are conditionally independent
given w.
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entirely related to w). Figure 1 demonstrates two sources of endogeneity. The first source is

due to the presence of endogenous covariate (panel (a)). The second source stems from the

endogenous self-selection (panel (b)) represented by w, which induces an indirect association

between the x and ξ. These two bias sources imply both endogeniety in x and an indirect

association between the x and ξ through the covariate w (panel (c)). The notation dir implies

a direct association between two variables which are connected by a thick arrow. The notation

indir implies an indirect association between two variables (through a mediation covariate

w) which are connected with a dashed line arrow.

Figure 1: Two sources of endogeneity
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3. Methodology

As discussed above, IV is based on the following basic requirements: it is correlated with the

endogenous covariate, as well as orthogonal to the random disturbance. Additionally, it must

satisfy the exclusion restriction according to which in the presence of the endogenous covariate

the IV must be excluded from the regression. The IV is allowed to affect the dependent

variable only through its affect on the endogenous covariate. However, the orthogonality

condition is rarely satisfied in the presence of truncation which is very frequently the nature

of data used in empirical research, and therefore the IV will not provide a solution for the

endogeneity problem. In what follows, we demonstrate the shortcoming of the conventional

IV estimator as well as potential bias generated in an environment of truncated data.
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Suppose that there is a population random variable w = (z; x1,x−1; w) and that there is an

independent and identically distributed sample {zi, x1i,x−1i ,wi}
N
i=1 drawn from this popu-

lation, referred to as the complete data set consisting of N observations.13 The instrumental

variable is z, the endogenous variable is x1 and the exogenous random variables are (x−1; w),

and where w ∈ Rl is a covariates vector.

Let ξ1i, ξ2i and vi be jointly dependent random disturbances with the respective marginal

distribution functions Fξ1 , Fξ2 and Fv. Their joint distribution function is Fξ1,ξ2,v. The model

is semiparametric since neither the marginals nor the joint distribution function are required

to be specified by the researcher.

The underlying model is composed of two parts. The first part consists of a selection

equation, while the second part consists of the substantive (of interest) equation.

The population (non-truncated) selection equation is defined as:

(3.1) y∗2i = wT
i γ + ξ2i

where γ ∈ Rl and wi ∈ Rl are the selection equation’s coefficients and covariates vector,

respectively. The selection equation’s random disturbance is denoted by ξ2i.

The substantive’s equation and the endogenous variable’s equation are defined as system

of equations:

(3.2)


y∗1i
x∗1i

 =

 xTi

[zTi ,x
T
−1i

]


β
δ

+

ξ1i

vi

 the substantive system of equations

where β ∈ Rp1 and δ ∈ Rp2 are covariates vectors, x1i is an endogenous variable included in

vector xi ∈ Rp1 , and the exogenous variables are denoted by xT−1i
. The substantive equation’s

random disturbance is denoted by ξ1i and v1i.

However the variables y∗1i, y
∗
2i, x

∗
1i are latent in the truncated environment and their respec-

tive observed realizations are denoted by y1i, y2i, x1i, (3.3) and (3.4) defined in to follow.

13Capital letters indicate random variables; lower case letters indicate realizations of these random variables.
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The variable y∗2i is latent, while is y2i observed and defined as

(3.3) y2i =


1 if y∗2i ≥ 0

Unobserved if y∗2i < 0

, the selection equation

(3.4)

y1i

x1i

 =



y∗1i
x∗1i

 if y2i = 1

Unobserved if y2i = 0

, the substantive system of equations

In the next section we reformulate the substantive equation as a partially linear single index

model.

3.1. Semi-parametric selectivity bias correction

Following Robinson (1988), the conditional expectation of the substantive equation in semi-

parametric (censored)14 sample selection models is some generally unknown function M1(.)

(to be estimated) of the selection equation’s covariates variables wi:

(3.5) E
[
ξ1i|ξ2i > −wT

i γ
]

=M1(wT
i γ)

such that γ is the selection equation’s coefficients vector. Since y1i is observed only if i is a

participant, the substantive equation’s dependent variable obtains the following functional

form:

(3.6) y1i = xTi β +M1(wT
i γ)︸ ︷︷ ︸

the bias term

+ ε̃1i︸︷︷︸
(ξ1i−M1(wT

i γ))|y2i=1

The regression equation in (3.5) is referred to as a semi-parametric partially linear regression

(SP-NLS), in which the non-linear part is the bias term function. This regression can be

estimated semi-parametrically in cases of a truncated sample selection model using a non-

14His approach is a generalization of the well-known inverse-mills ratio estimator introduced by Heckman
(1979) for the substantive equation’s bias term E

[
ξ1i|ξ2i > −wT

i γ
]

in the case of a censored sample selection
model. Note the difference between censored data and truncated data, which is the case we deal with.
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linear least squares procedure as suggested by Ichimura (1993).

Both Ichimura (1993)’s and Robinson (1988)’s models involve a kernel function estimation.

However, kernel estimates accuracy are sensitive to the bandwidth selected. This entails a

potential problem of finding the optimal bandwidth resulting in computational complexity.

One of the drawbacks of the above described methodology is that the kernel estimates’

accuracy depend on the bandwidth selection:“Whether there is a way to choose a bandwidth

sequence that is optimal for the estimation of the parameters is an open question” (Ichimura

and Lee, 1991). Additionally, semi-parametric models which involve a kernel function esti-

mation might lead to biased estimates due to the difficulty of the optimal bandwidth to

be found: “The well known bandwidth selection rules used in non-parametric estimation,

such as cross validation, are not generally applicable to semi-parametric settings” (Lewbel

and Schennach, 2007). Thus, in practice one needs to use a bandwidth that is “slightly”

smaller than the optimal bandwidth obtained using the cross-validation procedure. However,

this informal method for bandwidth choice may lead to a non-ignorable bias in the estimates

(Lewbel and Schennach, 2007).15 Thus, avoiding the problems involves with kernel estimation

our methodology relies on series (Sieve) estimator to approximate the bias term (in (3.6)).

The substantive equation depicted in (3.6) deals with endogenous truncation bias, assuming

that in this (substantive) equation the random disturbance and the covariates are not jointly

dependent. However, in cases where this random disturbance is jointly dependent with one (or

more) of the covariates there are two bias terms. The first one propagated by the endogenous

truncation and the second one propagated by the endogenous covariate. Next we present a

decomposition Theorem 1 which enables reformulating the substantive equations as a partially

linear single index model in the presence of an endogenous covariate.

3.2. Decomposition of the substantive equations

Theorem 1 Let the underlying model be as depicted in (3.3) and (3.4). Denote the random

disturbances εi and ε1i which are constructed as: εi = y∗1i−E[y∗1i|xi] and ε1i = y1i−E[y∗1i|y2i =

1], respectively. The following requirements must hold: (i) y1i = xTi β + E[ξ1i | xi] + εi ∀i ∈

{1, ..., N}; (ii) y1i = xTi β + ε∗1i, E[ε1i
∣∣ y2i = 1] = 0, ε∗1i ≡ ε1i + E[ξ1i | xi] +M(wi

Tγ),

15There is no “scientific protocol” enabling the determination of a proper bandwidth (in semi-parametric
estimation). It is known though that incorrect bandwidth choice leads to bias estimates (Lewbel and Schennach,
2007).
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∀i ∈ {i|y2i = 1}.

Proof: By construction εi = y∗1i − E[y∗1i|xi], it follows that

(3.7) y∗1i = E[xTi β | xi] + E[ξ1i | xi] + εi

Using (3.7) we get:

(3.8) E[y∗1i|y2i = 1] = E[εi|y2i = 1] + E
{
E[xTi β | xi]|y2i = 1

}
+ E {E[ξ1i | xi]|y2i = 1}

which is simplified to:

(3.9) E[y∗1i|y2i = 1] = E[εi|y2i = 1] + E[xTi β | xi] + E[ξ1i | xi]

In order to obtain the substantive equation in the truncated environment, we construct

ε1i = y1i − E[y∗1i|y2i = 1] where E[y∗1i|y2i = 1] is obtained from (3.9).16 Following Ichimura

and Lee (1991), the conditional expectation of εi given participation is expressed by some

unknown function M1(·) as E[εi|y2i = 1] =M1(wT
i γ). Thus, we obtain:

(3.10) y1i = xTi β︸︷︷︸
substantive
covariates

+

ε∗1i︷ ︸︸ ︷
M1(wT

i γ)︸ ︷︷ ︸
selection bias

term

+ E[ξ1i | xi]︸ ︷︷ ︸
endogeneity bias

term

+ ε1i︸︷︷︸
white noise

�

For sake of brevity we present equation (3.10) which is a decomposition of the substantive

equation into its components such as substantive equation’s covariates; selection bias term;

endogeniety bias term and a stochastic white noise term. It is easy to see that the conventional

IV can not be sufficient in eliminating the endogeniety bias E[ξ1i | xi] in (3.10), since under

truncation the endogeneity bias term is actually E[ξ1i | xi, y2i = 1].

Similarly, we construct ε2i = x1i − E[x∗1i|y2i = 1] where E[x∗1i|y2i = 1] satisfies:

(3.11) E[x∗1i|y2i = 1] = E[vi|y2i = 1] + E[[zTi ,x
T
−1i ]δ | y2i = 1]

16By construction of y1i, the equality E[y1i|y2i = 1] = E[y∗1i|y2i = 1] must be satisfied. It implies that
E[ε1i|y2i = 1] = E[y1i|y2i = 1]− E {E[y∗1i|y2i = 1]|y2i = 1} = E[y1i|y2i = 1]− E[y∗1i|y2i = 1] = 0.
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to get:

(3.12) ε2i = x1i − E[vi|y2i = 1]− E[[zTi ,x
T
−1i ]δ | y2i = 1]

We express E[vi|y2i = 1] in (3.12) as E[vi|y2i = 1] =M2(wT
i γ) whereM2(·) (see Theorem

4 to follow) is some unknown function and obtain:

(3.13) x1i = [zTi ,x
T
−1i ]δ︸ ︷︷ ︸

substantive
covariates

+

ε∗2i︷ ︸︸ ︷
M2(wT

i γ)︸ ︷︷ ︸
selection bias

term

+ ε2i︸︷︷︸
white noise

�

It is easy to see the joint dependence of ε∗2i and ε∗1i through the selection bias terms in

(3.10) and (3.13).

Next we formulate the relationship between the covariates and dependent variables in the

equations to be estimated, in the presence of an endogenous covariate in the substantive

equation under truncation.

3.3. Truncated sample selection model with an endogenous covariate

In cases where the substantive equation’s dependent variable is a function of an endogenous

covariate x1i, both x1i as well as y1i (as in (3.4)) are truncated and therefore, we face a

truncated sample selection model with an endogenous covariate.

Thus, the semi-parametric partially linear index model in a truncated environment consists

of the following system of equations:

(3.14)

y1i

x1i

 =


xTi β +M1(wT

i γ) +

ε∗∗1i︷ ︸︸ ︷
E[ξ1i | xi] + ε1i︸︷︷︸

white noise

[zTi ,x
T
−1i

]δ +M2(wT
i γ) + ε2i︸︷︷︸

white noise

where ε1i and ε2i are two jointly dependent random disturbances,17 and by construction are

17There is dependency of these two random disturbances due to the dependence between vi and ξ1i (as in
(3.4)) in the complete (non-truncated) data.
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independent of the random variables vector w.18 The intrinsic endogeneity in the model is

captured by the joint dependence of ε∗∗1i and the covariates.19 The presence of the function

M2(.) implies that we allow for a dependence between vi (the endogenous part of xi) and

the selection equation’s random disturbance ξ2i (in (3.3)). In such cases, xi is endogenous to

both random disturbances ε1i and ε2i.

We assume that the instrumental variable is jointly distributed with all covariates in the

data. Our primary interest is to show how the conditional expectation of the random variables

product z · ξ1 given participation (which is a function of a covariates vector w) is affected

by the co-movement of each one of these random variables with respect to w. For doing so,

we initially simplify the expectation of these random variables product, utilizing the Tower

property (Williams, 1991) of conditional expectation as follows:

Let z and w be continuous random variables, and let s be a discrete variable, indicating

participation. These three random variables {z,w, s} must satisfy the following property (see

Appendix for a formal proof):

(3.15) Ew [E[z|w, s]|s = s] = E[z|s = s]

It would be trivial to require that conditioning the instrumental variable z both on random

variable w and a stochastic function of w denoted by F(w, ε) (given the stochastic component

ε is an i.i.d white noise which is independent of z), would be the same as conditioning only

on w. Formally:

(3.16) E[z|w = w,F(w, ε)] = G(w)

where G(·) is some function of w.

The indicator (selection variable) s = I(ξ2i > −wTγ) is a stochastic function of w, thus,

E[z|s,w = w] = E[z|w = w] using the requirement in (3.16).

In Theorem 2 to follow we present our primary argument: in truncated sample selection

models, the orthogonality condition of the instrumental variable with respect to the ran-

18Not to be confused with its realization wi.
19The intrinsic model’s endogeneity is related to the joint dependence of the random disturbance and the

covariates in the population, unlike a conditional joint dependence of the random disturbance and the covariates
given participation in the sample.
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dom disturbance might be violated. This violation stems from a dependency between the

instrumental variables and the selection equation’s covariates.

Theorem 2 Let ξ1 and ξ2 be two jointly distributed random disturbances, and let z be a valid

instrumental variable satisfying E[z · ξ1] = 0. Denote a random variables vector w ∈ Rl, a

parameters vector γ ∈ Rl and a truncated environment using the indicator variable

s = I(ξ2 > −w′γ).

Assume the following conditions are satisfied: (i) E[ξ1|s = s,w = w] = M(wTγ); (ii)

E[z|w = w, s = s] = E[z|w = w] = G(w); (iii) z and ξ1 are conditionally independent given

w and s; (v) G andM are linearly dependent in the truncated environment (given s).20 Under

conditions (i)-(v), z is not orthogonal to the random disturbance ξ1 given s.

Proof: Using the tower property depicted in (3.15), the following must hold:

E[zξ1|s = s] = Ew [E[zξ1|w, s]|s = s] = Ew [Ez[z|w, s]Eξ1 [ξ1|w, s]|s = s]︸ ︷︷ ︸
by conditional independence of z and ξ1 given w and s

= Ew[GM|s = s] =

∫
w
G(w)M(wTγ)fw|s=s(w|s = s)dw

Similarly,

E[z|s = s] = Ew [E[z|w, s]|s = s] = Ew[G|s = s] =

∫
w
G(w)fw|s=s(w|s = s)dw

and

E[ξ1|s = s] = Ew [E[ξ1|w, s]|s = s] = Ew[M|s = s] =

∫
w
M(wTγ)fw|s=s(w|s = s)dw

Thus, since G andM are conditionally linearly dependent random variables in the truncated

environment (given s), implies that:

∫
G(w)M(wTγ)fw|s=s(w)dw 6=

∫
G(w)fw|s=s(w)dw

∫
M(wTγ)fw|s=s(w)dw

20
∫
G(w)M(wTγ)fw|s=s(w)dw 6=

∫
G(w)fw|s=s(w)dw

∫
M(wTγ)fw|s=s(w)dw.

14



and consequently:

E[zξ1|s = s] 6= E[z|s = s]E[ξ1|s = s] => COV[z, ξ1|s = s] 6= 0 �

Therefore, z is not orthogonal to ξ1 given s (in the truncated environment).

Theorem 3 Removing the contamination factor (the bias term) from the residual in the

truncated environment, leads to orthogonality of the instrumental variable to the substantive’s

equation disturbance, such that: E[z
[
ξ1 −M(wTγ)

]
|s = s] = 0.

Proof: Express E[z
[
ξ1 −M(wTγ)

]
|s = s] as a difference of two conditional expectations:

E[z
[
ξ1 −M(wTγ)

]
|s = s] = E[zξ1|s = s]− E[zM(wTγ)|s = s]

Using the Tower property depicted in (3.15), to get:

E[zM(wTγ)|s = s] = Ew

[
E[zM(wTγ)|w, s]|s = s

]
= Ew

[
Ez[z|w, s]E[M(wTγ)|w, s]|s = s

]︸ ︷︷ ︸
by conditional independence of z and M(wT γ) given w and s

= E[G(w)M(wTγ)|s = s]

But since E[zξ1|s = s] = E[G(w)M(wTγ)|s = s] (proof of Theorem 2), implies that

E[z
[
ξ1 −M(wTγ)

]
|s = s] = 0.

Moreover,

COV
[
z, ξ1 −M(wTγ)|s = s

]
= E[z

[
ξ1 −M(wTγ)

]
|s = s]︸ ︷︷ ︸

0

−E[z|s = s]E[ξ1 −M(wTγ)|s = s]︸ ︷︷ ︸
0

= 0. �

Therefore, a valid instrumental variable z is orthogonal to the truncated distribution (non-

contaminated) disturbance ε1i in (3.14), even though z and w are dependent.

The complete data {xi, zi, wi, y1i, y2i} is a random sample drawn from {xi, zi,wi, y1i, y2i},

while the observed data is a subsample consisting of observations which satisfy the selection
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equation.

The joint dependence of (ξ1, ξ2, v) implies the violation of zero mean expectation (under

truncation) in the x1i regression equation (3.4) such that E[v|ξ2 > −w′γ] = M2(wTγ).

This violation is a precondition for the endogeneity of {x−1i, zi} with respect to vi given

participation in the regression of x1i.
21 The following Theorem argues that such violation is

also obtained in cases where v and ξ2 are conditionally independent given ξ1 implying that

the co-movement of v and ξ2 is entirely related to a variation in ξ1.

Theorem 4 Let ξ1 and ξ2 be two jointly distributed random disturbances of the substantive

and selection equations, respectively. Let v be a random variable which depends on ξ1 such that

v and ξ2 are conditionally independent given ξ1. Denote a random variables vector w ∈ Rl

independent of (ξ1, ξ2, v) with a realization w, a parameters vector γ ∈ Rl and a truncated

environment using the indicator variable s = I(ξ2 > −w′γ).

Assume the following conditions are satisfied: (i) the conditional expectation of the ran-

dom disturbance given participation is E[ξ1|ξ2 > −w′γ] =M1(wTγ), Robinson (1988); (ii)

E[v|ξ1, ξ2 > −w′γ] = E[v|ξ1] = H(ξ1), (endogniety); (iii) H(.), a monotonic mapping R 7→ R.

Under conditions (i)-(iii), E[v|ξ2 > −w′γ] 6= E[v] regardless of the conditional independence

of v and ξ2 given ξ1.

Proof: Applying Tower property to E[v|s = 1]:

E[v|ξ2 > −w′γ] = E[v|s = 1] = Eξ1 {E[v|ξ1, s]|s = 1} = E[H(ξ1)|s = 1] =M2(wTγ) 6= E[v].

It can be shown that ξ1 mediates between v and s (participation), in that it generates a

co-movement between the random variables v and s. The last equality relies on the fact that

the random variable H(ξ1) is a monotonic mapping of ξ1, implying dependence on s due to

the dependency between ξ1 and s. �

Next we show that the conventional IV estimator is inconsistent in the presence of a

21As been discussed in Heckman (1979), the fact that the conditional disturbance (given participation) in
the the substantive equation of x1i is a function of the selection equation’s covariates, leads to a potential
correlation between the disturbance and the substantive equation’s covariates. This correlation implies the
endogeneity of the substantive equation’s covariates {x−1i, zi} with respect to its random disturbance vi

given participation.
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truncated environment in which both the instrumental variable’s as well as the random

disturbance’s expectation are function of the selection equation’s covariates vector w. The

proof in (3.4) to follow relies on a linear dependence assumption between these two functions of

w. The rational for the linear dependence is due to the fact that the random disturbance’s (ξ1)

conditional expectation generally satisfies a monotonicity with respect to the index variable

w′γ. Therefore, it is enough to assume that on average, z is affected monotonically by the

index variable w′γ to generate a linear dependence between z and the expectation of ξ1.22

3.4. The conventional IV estimator’s Asymptotic bias

The IV estimator’s asymptotic bias is:

(3.17) β̂iv = (zTx)−1zTy1 = (zTx)−1zT (xβ +M1(wTγ) + ε∗∗1i )

(3.18) β̂iv = (zTx)−1zT (xβ) + (zTx)−1zTM1(wTγ) + (zTx)−1zT ε∗∗1i

(3.19) β̂iv = β + (zTx)−1zTM1(wTγ) + (zTx)−1zT ε∗∗1i

(3.20) plim
N→∞

[
β̂iv

]
= β + plim

n→∞

[
(N−1zTx)−1

]
plim
N→∞

[
N−1zTM1(wTγ)

]
︸ ︷︷ ︸

Asymptotic bias

Given any correlation between z and M1(wTγ), plim
n→∞

[
zTM1(wTγ)

]
6→ 0. Thus, the β̂iv

estimator is an inconsistent estimator for β.

Next we discuss the joint dependence of the covariates and the substantive equations’

random disturbances in the truncated data.

3.5. The instrument variable estimator: truncated sample

Denote the truncated data by a sequence of observations {y1i,xi,wi, zi}ni=1, such that

each observation is an independent realization of the conditional joint distribution function

22Both functions are dependent through w by construction, generally leading to some degree of linear
dependence.
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of the random variables {y1,x,w, z} given they are selected into the sample (y2 = 1). The

endogenous random variable is denoted by x1 and is included in vector x. At least one of

the exogenous and endogenous parts of the random variable xi depends on the conditional

random variable ξ1i|ξ2i ≥ −wT
i γ due to a co-movement between these two random variable

with respect to wT
i γ. Moreover, only the endogenous part of xi depends on the ξ1i due to a

co-movement between these two random variable with respect to vi. This implies there are

two sources of endogeneity to be taken into consideration: the first source is related to the

endogenous covariate, while the second source is due to the truncation environment of the

data.

Next we present our proposed estimator using two different trigonometric series: Cosine

and Fourier.

3.6. Transformation of both Cosine and Fourier series for unknown func-

tions estimation

The functionsM1(.) andM2(.) in (3.14) are approximated using their conditional moment

expansion by employing either Cosine or Fourier sequence. The Cosine sequence requires

that the support of the index variable in (3.14) will be on the [0, 1] domain, while the Fourier

sequence requires that the support will be on the [−1, 1] domain.23 This requirement does not

entail loss of generality, because it is satisfied by utilizing a different monotone transformation

function on the index variable (Horowitz, 2014) in each one of the Cosine and Fourier series.

The series generated by the transformation is referred to as a transformed Cosine (or Fourier)

series.

We express the conditional moments expressions by the functions M1(·) and M2(·):24

(3.21) E[ξ1|ξ2 > −wT
i γ] ≡M1(wT

i γ), E[v|ξ2 > −wT
i γ] ≡M2(wT

i γ)

23Fourier series decomposes a periodic signal into a sum of an infinite number of harmonics (sine and cosine
functions) of different frequencies and and amplitudes, while Fourier transform decomposes a non-periodic
signal into an infinite number of harmonics having different frequencies and amplitudes.

24Unlike, the two stage estimation procedure for partially linear single index models in Zhou et al. (2016)
in which the instrumental variable equation is estimated by a linear regression, we deal with an endogenous
truncated data set consisting of a system of truncated substantive equations. Due to the truncation, each of
the equations in this system is modeled as a partially linear single index model. We also depart from the
procedure suggested in Zhou et al. (2016) by employing a Sieve estimator instead of a kernel.
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Utilizing the Fourier cosine sequence we substitute the functions M1(·) and M2(·) with

their respective conditional moment expansions M̂c
1(·) and M̂c

2(·), defined as:

(3.22) M̂c
j(wi;θjc) = αjc +

K∑
k=1

δcjk cos(ρ(wT
i γ)πk), j = 1, 2

where ρ(.) is some known (arbitrarily chosen) monotonic twice differentiable mapping R 7→

(0, 1), θjc ≡
{
αjc,γ, δ

c
j

}
and δcj ≡ [δcj1, ..., δ

c
jK ], with K being the number of elements in the

expansion.

Similarly, utilizing the Fourier sequence we substitute the functionsM1(·) andM2(·) with

their respective conditional moment expansions M̂f
1(·) and M̂f

2(·), defined as:

(3.23) M̂f
j (wi;θjf ) = αjf +

K∑
k=1

δf1jk cos(λ(wT
i γ)πk1) +

K∑
k=1

δj2jk sin(λ(wT
i γ)πk2), j = 1, 2

where λ(.) is some known (arbitrarily chosen) monotonic twice differentiable mapping R 7→

(−1, 1), θjf ≡
{
αjf ,γ, δ

f
1j , δ

f
2j

}
and δfmj ≡ [δfmj1 , ..., δ

f
jmK

], m = 1, 2 representing Sine or

Cosine respectively.

Given the non-linear function M̃G
j (wi;θjG) with G ∈ {c, f} for j = 1, 2 an index model

can be estimated (Racine et al., 2014):

(3.24) (η̂j, θ̂jG) = arg min
(ηj ,θjG)∈Θ×∆K

1

n

n∑
i=1

(
yji − χTjiηj − M̃G

j (wi;θjG)
)2

where yji is the j’th equation’s dependent variable; K is the number of elements in the

expansion; χji and ηj represent the covariates set and the parameter set, respectively in the

linear part of the j’th equation.

Given that the expectation of the objective function in (3.24) is finite for all values of the

parameters (ηj, θjG)25

(3.25) E

[
sup

(ηj ,θjG)∈Θ×∆K

1

n

n∑
i=1

(
yji − χTjiηj − M̃G

j (wi;θjG)
)2
]
<∞

25This assumption can be relaxed using a positive weight function K(x) on (0,∞) in the nonlinear mini-
mization (see, Racine et al. (2014)).
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The objective function to be estimated is some unknown non-linear function of the index

variable (Racine et al., 2014). However, in our implementation we will use a partially linear

index function, due to the linearity of the substantive equation with respect to its covariates

and the non-linearity of the bias term function.

Next we discuss the two steps estimation procedure to be employed for the correction of

both endogeneity and truncation bias propagated by truncation.

3.7. The estimation procedure

In this section we introduce a two step estimation procedure to eliminate the two sources

of bias discussed. To eliminate the endogeneity bias term we adapt a similar approach to the

two step procedure in Zhou et al. (2016) for a partially linear single index model estimation in

which the first stage is a regression of the endogenous covariate on all the exogenous covariates

and the instrumental variable. In the second stage the endogenous covariate is substituted

with the fitted values obtained from the first stage. However, the estimation approach in Zhou

et al. (2016) cannot be implemented in truncated environment since it treats the first stage

regression as a linear population regression (as if the entire covariates distribution function is

observed). We alleviate this by modeling both the first as well as the second stage equations

as endogenously truncated equations. In order to eliminate the endogenous truncation bias we

control for this source of bias by including the truncation bias term as an additional covariate

in the substantive equations as depicted in (3.14). Thus, the partial linearity is applied to

both the first as well as the second stage equations.

In the first stage we regress the endogenous covariate on the instrumental and exogenous

variables, by minimizing the partially linear index model:

(3.26) (δ̂, θ̂1f ) = arg min
(δ,θ1f )∈Θ×∆K

1

n

n∑
i=1

(
x1i −

[
xT−1i , z

T
i

]
δ − M̂1(wi;θ1f )

)2

In the second stage, the endogenous variable is replaced by its predicted value obtained
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from the first stage in (3.26), and we minimize the following function:

(3.27) (β̂, θ̂2f ) = arg min
(β,θ2f )∈Θ×∆K

1

n

n∑
i=1

(
y1i −

[
x̂1i,x

T
−1i

]
β − M̂2(wi;θ2f )

)2

As can be seen in (3.27) the two sources of endogeneity bias are dealt with: (i) the bias

propagated by the endogenous covariate is alleviated by utilizing the covariate set
[
x̂1i,x

T
−1i

]
consisting entirely of exogenous covariates; (ii) the bias propagated by the endogenous trun-

cation is alleviated by controlling for the selection bias term.

Next we present Monte Carlo simulation to examine our semi-parametric IV estimator’s

performance in a truncated environment.

4. Simulation

In this section we generate multiple random data sets to be used for the examination of

our model’s performance using different sample sizes.

First, we discuss the procedure for the data generation process (DGP).

4.1. Data generation process

Denote the sample size by N ∈ {500, 2000, 3000, 5000, 8000, 10000}. In order to not restrict

the data generation process to the family of symmetric unimodal distribution functions, a

mixture of distribution functions is utilized to generate each of the selection model’s distur-

bances which are jointly dependent (as will be discussed in section 4.1.1 to follow). In order

to verify that our proposed model performs well under different data generating processes

(DGP), we construct a data set consisting of 2,000,000 distribution functions,26 practically

generating 100 millions realizations which are not i.i.d. By construction, each observation is

randomly drawn from a unique mixture of distribution functions.

26The estimates obtained given the various data distribution functions will be supplied upon request.
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4.1.1. The disturbances’ joint distribution function

Each triple of disturbances {ξ1i, ξ2i, vi} is randomly and independently drawn from Fξ1,ξ2,v,

which is the substantive and participation equations’ disturbances joint distribution function.

The aforementioned joint density function consists of two components: a Copula function27

characterizing the disturbances’ dependence structure and three marginal distribution func-

tions Fξ1 , Fξ2 and Fv. In order to verify our model’s performance in the presence of random

disturbances’ distribution functions which are not restricted to the family of symmetric and

unimodal distribution functions, each one of the sample selection model’s disturbances ξ1 and

ξ2 is marginally distributed according to a mixture of three different distribution functions:

(i) a normal distribution function with expectation and standard deviation parameters (µ, σa)

denoted by N (µ, σ2
a); (ii) a normal distribution function with expectation and standard de-

viation parameters (−µ, σb) denoted by N (−µ, σ2
b ); (iii) a gamma distribution function with

scale and shape parameters (µϕ, ϕ) denoted by ΓGamma (µϕ, ϕ)28. This mixture distribution

function is defined as:

(4.1)


v ∼ N (0, σ2

v)

ξj ∼ 0.4N (µ, σ2
a) + 0.5N (−µ, σ2

b ) + 0.1ΓGamma (µϕ, ϕ) , j = 1, 2.

where E [ξj] = 0 and E [v] = 0 .

The parameters set (µ, σa, σb, ϕ, σv) = (4, 2.5, 1.5, 2, 1) is arbitrarily chosen. Due to its

simplicity, the Clayton Copula (as will be discussed in section 4.1.2 to follow) with a degree

of dependence parameter is set to equal 1, assuring the disturbances are highly correlated is

used for controlling the dependence structure.

Next we employ a function characterizing the dependence properties of the Copula (McNeil

and Nešlehová, 2009), referred to as a generator function to construct of the joint dependence

of the random disturbances in (4.1).

27Any continuous joint distribution function can be characterized by a set of marginal distribution functions
and a joint distribution function determining the dependence structure which is referred to as a Copula
function. (Sklar’s Theorem (Sklar, 1959)).

28The scale and shape parameters implies the expectation and standard deviation parameters are (µ,
√
µ/ϕ),

respectively.
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4.1.2. Archimedean Copula function

An Archimedean Copula is a Copula characterized with a non-increasing, continuous gener-

ator function ψ: [0,∞]→ [0, 1] which satisfies ψ(0) = 1, ψ(∞) = 0 and is strictly decreasing

on [0, inf {t : ψ(t) = 0}]. In particular, we are interested in the d dimensional Archemdean

Copula family (3 in the present case29) which has the simple algebraic form (McNeil and

Nešlehová, 2009):30

(4.2) C(u1, .., ud) = ψ(ψ−1(u1), ..., ψ−1(ud)), (u1, ..., ud) ∈ [0, 1]d

where ψ is a specific function known as the generator of C. To generate the disturbances, the

Clayton Copula’s generator ψ(t) = (1 + t)−1/θ is chosen.

The covariates random variables vector [z, x2,w1,w2] is jointly normally distributed with

an expectation vector µ = [0, 0, 0, 0]T and a covariance matrix Σ4×4:

(4.3)


z

x2

w1

w2

 ∼ N4(µ,Σ4×4), Σ4×4 =


σ2

z σz,x2 σz,w1 σz,w2

σz,x2 σ2
x2

σx2,w1 σx2,w2

σz,w1 σx2,w1 σ2
w1

σw1,w2

σz,w2 σx2,w2 σw1,w2 σ2
w2


The arbitrarily chosen covariance matrix is:

(4.4) Σ4×4 =


1 0.4 0.8 −0.6

0.4 1.264 0.36 −0.48

0.8 0.36 2 −0.4

−0.6 −0.48 −0.4 2


We generate the data y1i, y2i, x1i according to the following data generation process (DGP)

29d = 3 representing the three dimensional vector of random disturbances (vi, ξ1i, ξ2i).
30Knowing the distribution corresponding to a generator ψ, Marshall and Olkin (1988) presented a sampling

algorithm for exchangeable Archimedean copulas which does not require the knowledge of the copula density.
This algorithm is therefore applicable to large dimensions (Hofert, 2008).
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(Escanciano, 2017):

(4.5) DGP1 :


y∗1i = α1 + β1x1i + β2x2i + ξ1i

y∗2i = α2 + γ1w1i + γ2w2i + ξ2i

x∗1i = δ1zi + δ2x2i + vi

where each i element in the sequence {x2i, zi, w1i, w2i}Ni=1 is an independent realization of the

random variables (x2, z,w1,w2). We choose the parameter setting [α1, α2, β1, β2, δ1, δ2, γ1, γ2] =

[2, 0.5, 1, 1.25, 0.5, 1, 2,−1].

The truncated data set is characterized by the following equations:

(4.6)

y1i

x1i

 =



α1 + β1x1i + β2x2i + ξ1i

δ1zi + δ2x2i + vi

 if y∗2i ≥ 0

Unobserved if y∗2i < 0

,

where x1i be an endogenous variable included in vector xi ∈ Rp, in which all the elements

(except for xi) are exogenous variables and β ∈ Rp is a covariates vector. The substantive

equation’s random disturbance is denoted by ξ1i.

4.2. Simulations result

We have randomly generated for each sample size N ∈ {500, 2000, 3000, 5000, 8000, 10000},

5, 000 data sets using the data generation process elaborated on in 4.1. For a given number

of observations N , different models are estimated: (i) an OLS estimator utilizing sample

consisting of random realizations from the complete distribution function without correct-

ing for the endogeneity of x1i covariate; (ii) a conventional IV estimator correcting for the

endogeneity of x1i covariate using the aforementioned entire distribution function; (iii) a con-

ventional IV estimator correcting for the endogeneity of x1i covariate applied to a truncated

portion of the data distribution function consisting of participants only (without correcting

for the self-selection bias); (v) truncated sample model’s estimates using the developed Sieve

(SPIV), correcting for both truncation as well as endogeneity biases.

Table I presents summary statistics of models (i)’s and (ii)’s estimates, while table II

24



presents summary statistics of models (iii)’s and (v)’s estimates. In table III different conver-

gence measures of these estimates are presented.

TABLE I

Monte Carlo Simulation - Non-truncated (complete) data set

True Parametera Estimate
Model Setup
Sample size

500 2000 3000 5000 8000 10000

Full sample OLS estimates

β1 = 1
Mean 2.6783 2.6791 2.6799 2.6818 2.6803 2.6814

Median 2.6820 2.6798 2.6796 2.6817 2.6811 2.6807
Std 0.1573 0.0774 0.0629 0.0486 0.0383 0.0348

β2 = 1.25
Mean -0.6960 -0.6952 -0.6957 -0.6977 -0.6964 -0.6982

Median -0.7005 -0.6955 -0.6975 -0.6971 -0.6971 -0.6977
Std 0.2434 0.1206 0.0983 0.0761 0.0602 0.0543

Full sample conventional IV’s estimates

β1 = 1
Mean 0.9722 0.9944 0.9967 1.0003 0.9996 1.0018

Median 0.9862 1.0011 0.9988 1.0016 1.0020 1.0037
Std 0.4392 0.2139 0.1754 0.1341 0.1064 0.0966

β2 = 1.25
Mean 1.2806 1.2558 1.2537 1.2499 1.2503 1.2472

Median 1.2611 1.2467 1.2517 1.2491 1.2470 1.2458
Std 0.5457 0.2613 0.2173 0.1650 0.1320 0.1193

Note: a The parameters that are used in the data generation process.
We estimate by ordinary least squares (OLS) method the parameters for the full sample and truncated sample sample
without correction for the selectivity bias, and compute the standard deviation in every random sample consisting of N
observations. Then, we calculate for these estimates the mean, median and standard deviation (Std.) over all data sets.
The standard deviations are obtained using the estimates from the Monte-Carlo simulations.

Entires in table I indicate that regardless of the sample size the means of the OLS esti-

mates is biased, such that β1 = 2.68 and β2 = −0.69, while the mean of the full sample

IV ’s estimates are β1 = 0.996 and β2 = 1.25. The standard deviation obtained for β1 (the

endogenous covariate’s coefficient) using the IV estimator is almost 3 times larger than in

the OLS estimator and decreases from 0.4392 to 0.0966 when the sample size increases from

500 to 10, 000 observations.
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TABLE II

Monte Carlo Simulation - Truncated data set

True Parametera Estimate
Model Setup
Sample size

500 2000 3000 5000 8000 10000

Truncated sample conventional IV’s estimates

β1 = 1
Mean 0.1085 0.1695 0.1772 0.1800 0.1827 0.1873

Median 0.1619 0.1815 0.1865 0.1826 0.1893 0.1908
Std 0.7627 0.3538 0.2949 0.2254 0.1793 0.1646

β2 = 1.25
Mean 2.0885 2.0240 2.0172 2.0137 2.0105 2.0058

Median 2.0199 2.0081 2.0031 2.0101 2.0066 2.0025
Std 0.8886 0.4138 0.3454 0.2647 0.2100 0.1924

Truncated sample model’s estimates (First stage Sieve SPIV-NLS)

δ1 = 0.5
Mean 0.4725 0.4815 0.4857 0.4917 0.4968 0.4986

Median 0.4716 0.4809 0.4863 0.4927 0.4979 0.4992
Std 0.0734 0.0401 0.0350 0.0274 0.0209 0.0177

δ2 = 1
Mean 0.9957 0.9975 0.9979 0.9989 0.9993 0.9999

Median 0.9957 0.9971 0.9978 0.9988 0.9993 0.9998
Std 0.0536 0.0264 0.0214 0.0166 0.0131 0.0117

Truncated sample model’s estimates (Second stage Sieve SPIV-NLS)

β1 = 1
Mean 1.0636 1.0088 1.0089 0.9997 1.0028 1.0030

Median 1.0831 1.0181 1.0215 1.0074 1.0052 1.0057
Std 0.7498 0.3782 0.3100 0.2290 0.1779 0.1605

β2 = 1.25
Mean 1.1675 1.2352 1.2387 1.2486 1.2462 1.2458

Median 1.1442 1.2257 1.2286 1.2408 1.2445 1.2451
Std 0.8297 0.4153 0.3423 0.2566 0.2002 0.1804

Note: a The parameters that are used in the data generation process.
We estimate by ordinary least squares (OLS) method the parameters for the full sample and truncated sample sample
without correction for the selectivity bias, and compute the standard deviation in every random sample consisting of N
observations. Then, we calculate for these estimates the mean, median and standard deviation (Std.) over all data sets.
The standard deviations are obtained using the estimates from the Monte-Carlo simulations.

Entires31 in table II indicate that regardless of the sample size the means of the truncated

sample IV ’s estimates are biased (ranges from five to ten folds difference) compared to the

estimate that would have been emerged. Note that the parameters estimates hardly improve

their accuracy as sample size increases. This is due to the presence of two bias sources. The

mean estimate of β1 (the endogenous covariate’s parameter) obtained from implementing our

proposed methodology, basically mimics the results obtained using a random sample from

the entire data distribution function for sample sizes above 2, 000 observations. The standard

deviations of this estimate for sample sizes of 500 and 10, 000 observations are 0.7498 and

31For sake of brevity we have omitted the estimates of the nuisance parameters which can be furnished
upon request.
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0.1605, respectively. While, for sample size of 5, 000 observation (or above), the mean estimate

of β2 (the exogenous covariate’s parameter) approximates the estimate obtained by employing

the conventional IV using a random sample from the entire data distribution function. This

estimate is biased even for 10, 000 observation.

We conduct sensitivity test to measure the influence of an increase in number of observations

on the accuracy of the truncated sample’s estimates.

The first accuracy measure we use is the standardized root mean square error, RMSEj ,

to measure the bias in the truncated regression estimate relative to its true parameter value

that would have been obtained in an un-truncated distribution, defined as:

(4.7) RMSEj (Ω) =

 1

Ω

Ω∑
i=1

(
β̂si,j − βsj

βsj

)2
1/2

,

where β̂si,j and βsj stand for the substantive (s) equation’s j’th coefficient estimated in the

i’th sample and the coefficient in the theoretical model that would have been obtained in the

entire population, respectively. Ω is the number of data sets generated for the Monte-Carlo

simulations, which is 5000 data sets (each one consists of N observations).

Another measure is based on a similar formula to the one described in (4.7), and is intended

to find the relative accuracy of the truncated sample’ estimates in comparison to full sample

estimates, defined as:

(4.8) Rj (Ω) =

 1

Ω

Ω∑
i=1

(
β̂tsi,j − β̂si,j

β̂si,j

)2
1/2

,

where β̂tsi,j and β̂si,j stand for the substantive (s) equation’s j’th coefficient estimated using the

truncated (t) sample and the full sample, respectively. This measures evaluates the relative

model’s performance in the truncated sample with respect to the conventional IV using the

full sample.

The last estimates’ accuracy measure is the δ coefficient used for the calculation of the

estimators’ standard deviations convergence rate nδ with respect to the sample size. It depicts

the speed of standard deviation’s shrinkage which is due to increasing sample size. This

coefficient is calculated based on the following ratio:

(4.9) δ =
ln (σ1/σ2)

ln (n2/n1)
,
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where σ1 and σ2 are the estimate’s standard deviations calculated for data sets with n1 and

n2 number observations, respectively (calculated for a given estimate).

TABLE III

Monte Carlo Simulation - Convergence measures

Model’s estimates
Parameter Number of observations

500 2000 3000 5000 8000 10000

RMSE measure

Full sample conventional IV’s estimates
β1 0.4400 0.2139 0.1754 0.1341 0.1063 0.0966

β2 0.4372 0.2090 0.1739 0.1320 0.1056 0.0955

Truncated sample conventional IV’s estimates
β1 1.1732 0.9027 0.8740 0.8504 0.8367 0.8292

β2 0.9774 0.7021 0.6731 0.6466 0.6312 0.6239

Truncated sample model’s estimates (First stage SPIV-NLS)
δ1 0.1567 0.0883 0.0756 0.0573 0.0423 0.0355

δ2 0.0537 0.0265 0.0215 0.0166 0.0131 0.0117

Truncated sample model’s estimates (Second stage SPIV-NLS)
β1 0.7525 0.3782 0.3101 0.2290 0.1779 0.1605

β2 0.6670 0.3324 0.2740 0.2053 0.1602 0.1443

Rj (n) measure - relative to full sample IV

Truncated sample conventional IV’s estimates
β1 5.0168 0.9620 0.9059 0.8665 0.8459 0.8371

β2 1.8410 0.7048 0.6722 0.6471 0.6305 0.6265

Truncated sample model’s estimates (Second stage SPIV-NLS)
β1 4.5390 0.3719 0.2911 0.2042 0.1571 0.1359

β2 1.2101 0.2986 0.2375 0.1733 0.1345 0.1186

δ consistency measure (nδ ≡ the convergence rate)

Truncated sample conventional IV’s estimates
β1 - 0.7627 0.3538 0.2949 0.2254 0.1793

Truncated sample model’s estimates (Second stage SPIV-NLS)
β1 - 0.4937 0.4904 0.5929 0.5372 0.4613

Note: We estimate by ordinary least squares (OLS) method the parameters for the full sample and truncated sample
sample without correction for the selectivity bias, and compute the standard deviation in every random sample consisting
of N observations. Then, we calculate for these estimates the mean, median and standard deviation (Std.) over all data
sets. The standard deviations are obtained using the estimates from the Monte-Carlo simulations.

The entires in table III indicate that the root mean squares error (RMSE) measure of

the estimates obtained by employing the conventional IV estimator using a random sample

from the entire data distribution function, is getting smaller as the sample size increases as
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can be expected. However, applying the same procedure to the truncated data set leads to

RMSE measures which are in the range of 4 to 8 fold larger, given a sample sizes of 2, 000 to

10, 0000 observations, respectively. This is indeed a huge bias generated by the conventional

IV which is not immune to truncation bias. Additionally, the RMSE measures show negligible

improvements as a function of number of observations for the conventional IV , whereas there

is a huge improvement of the RMSE as a function of number of observations for the Sieve

SPIV estimator provided by our model. Another measure of performance is the r measure.

It is evident that the estimate of Sieve SPIV is a
√
n consistent as depicted by the δ

consistency measure, while the truncated data conventional IV is poorly functioning in terms

of consistency as is shown by entires in table III. In other words the consistency is not

asymptoticly improved.

5. Conclusion

This paper extends the literature on instrumental variables for endogenously truncated

data. We introduce a two stage estimation procedure, utilizing a Fourier-dependent Sieve

estimator (SPIV ) to capture the bias term. We provide analytical proof showing that the

conventional IV estimator does not perform the task it was intended to and introduces an

additional unintended bias into the parameters’ estimates of the substantive equation. The

instrumental variable is endogenous by itself in the context of endogenously truncated data.

This endogeneity is related to a co-movement between the instrumental variable and the

substantive equation’s random disturbance, generated by mediating covariates. The offered

truncation-proof IV is shown to be a proper IV estimator under endogenous truncation.

Monte-Carlo application attests to the SPIV estimator’s high accuracy and its
√
n consis-

tency. These results have been verified by utilizing 2,000,000 different distribution functions

(not restricted to the unimodal symmetric family), practically generating 100 millions real-

izations to construct the covariates’ data sets which are not i.i.d. The various distribution

functions attest to a very high accuracy of the model as depicted by the parameter estimates

which quiet accurately mimic the true parameters.
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Appendix

Proof of Tower property:

Ew [E[z|w, s]|s = s] =

∫
w

∫
z
zfz|w,s(z|w = w, s = s)dzfw|s(w|s = s)dw

=

∫
w

∫
z
z
fz,w|s=s(z,w|s = s)

fw|s=s(w|s = s)
dzfw|s=s(w|s = s)dw =

∫
w

∫
z
zfz,w|s(z,w|s = s)dzdw

=

∫
z
zfz|s(z|s = s)dz = E[z|s = s] �
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